Patents by Inventor Munehiko Nagatani

Munehiko Nagatani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210320735
    Abstract: A signal generating device includes a digital signal processing unit, M sub DACs of which an analog bandwidth is fB, M being an integer equal to or greater than 2, a broadband analog signal generating unit configured to generate a broadband analog signal that includes a component of a frequency of (M-1)fB or more by using M analog signals output from the M sub DACs. The digital signal processing unit includes components for generating M original divided signals that correspond to signals obtained by dividing a desired output signal into M portions on a frequency axis and down-converting the portions to the baseband, components for generating M folded divided signals by folding back the M original divided signals on the frequency axis, and a 2M×M filter that takes the original divided signals and the folded divided signals as inputs and outputs M composite signals to be transmitted to the M sub DACs. The 2M×M filter can set a response function independently for each of 2M2 combinations of input and output.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 14, 2021
    Inventors: Hiroshi Yamazaki, Munehiko Nagatani, Hideyuki Nosaka, Masanori Nakamura, Yutaka Miyamoto
  • Publication number: 20210320667
    Abstract: A wide-band analog input signal is converted into a digital output signal on the basis of a band division method without the need for filter circuits. An analog processing block Aj (j=2 to N, where N is an integer) down-converts an analog input signal Sx using a cutoff frequency fj-1 of a channel CHj-1 and A/D-converts an analog signal Saj acquired as a result. A digital processing block Bj doubles the signal strength of a first digital signal S1j acquired by Aj, subtracts a third digital signal S3j-1 of the channel CHj-1 from a second digital signal S2j acquired as a result, up-converts the acquired third digital signal S3j using the cutoff frequency fj-1, and outputs the result to an adder as a channel output signal Syj of a corresponding channel CHj.
    Type: Application
    Filed: August 21, 2019
    Publication date: October 14, 2021
    Inventors: Teruo Jo, Hiroshi Yamazaki, Munehiko Nagatani, Hiroshi Hamada, Hideyuki Nosaka
  • Publication number: 20210257979
    Abstract: In a distributed amplifier, a plurality of cascode amplifiers connected in parallel between an input side transmission line and an output side transmission line are provided, a transmission line is connected to an input terminal of an output transistor of each of the amplifiers, and a bias potential is applied from a bias circuit to the input terminal of the output transistor via the transmission line.
    Type: Application
    Filed: May 31, 2019
    Publication date: August 19, 2021
    Inventors: Teruo Jo, Munehiko Nagatani, Hideyuki Nosaka
  • Patent number: 11070219
    Abstract: A digital-to-analog converter includes a core circuit including a plurality of input terminals for multi-bit digital signals, an output terminal for an analog signal, a plurality of constant current sources, a plurality of switch circuits connected in series to respective constant current sources of the plurality of constant current sources, and a load resistor connected to the output terminal. The core circuit being configured to select whether or not to allow a current to flow through each of the plurality of switch circuits based on the multi-bit digital signals and output a voltage generated by allowing the current flowing through each of the plurality of switch circuits to flow through the load resistor from the output terminal as an analog signal.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 20, 2021
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20210194523
    Abstract: A digital signal process unit includes a first cancel signal generation unit and a second cancel signal generation unit. The first cancel signal generation unit generates, as a first cancel signal component, a cancel signal component corresponding to an image signal included in an analog signal output from a mixer. The second cancel signal generation unit generates, as a second cancel signal component, a cancel signal component corresponding to a leakage signal generated between an input and output of the mixer. The digital signal process unit includes subtractors for subtracting the first cancel signal component and the second cancel signal component from a signal component corresponding to a frequency band divided from an input signal to obtain a digital signal.
    Type: Application
    Filed: April 22, 2019
    Publication date: June 24, 2021
    Inventors: Teruo Jo, Munehiko Nagatani, Hiroshi Hamada, Hiroyuki Fukuyama, Hideyuki Nosaka, Hiroshi Yamazaki
  • Publication number: 20210175706
    Abstract: A reception-side IC chip (1a) includes a pad (15) which is connected to a transmission line (2) which is outside the chip and has a characteristic impedance Z0 of 50 ?, a signal line (16), one end of which is connected to the pad (15), a reception-side input unit circuit (10) configured to receive a signal (S) transmitted from a transmission-side IC chip via the transmission line (2), a 50-? termination resistor (11), for impedance matching, which is connected between a predetermined voltage and the other end of the signal line (16) and is configured to terminate the transmission line (2), and a capacitor (12) inserted between a node (A) of the signal line (16) and the termination resistor (11) and an input terminal (In) of the reception-side input unit circuit (10). A DC-blocking circuit is formed by the capacitor (12).
    Type: Application
    Filed: December 13, 2018
    Publication date: June 10, 2021
    Inventors: Munehiko NAGATANI, Hideyuki NOSAKA, Shinsuke NAKANO
  • Publication number: 20210167786
    Abstract: A digital-to-analog converter includes a core circuit including a plurality of input terminals for multi-bit digital signals, an output terminal for an analog signal, a plurality of constant current sources, a plurality of switch circuits connected in series to respective constant current sources of the plurality of constant current sources, and a load resistor connected to the output terminal. The core circuit being configured to select whether or not to allow a current to flow through each of the plurality of switch circuits based on the multi-bit digital signals and output a voltage generated by allowing the current flowing through each of the plurality of switch circuits to flow through the load resistor from the output terminal as an analog signal.
    Type: Application
    Filed: May 16, 2019
    Publication date: June 3, 2021
    Inventors: Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20210091533
    Abstract: A CMOS inverter circuit is provided as a circuit to modulate a current flowing into a laser diode on the basis of a digital signal. An amplitude of a current flowing in a PMOSFET in the CMOS inverter circuit is made to contribute to an amplitude of the current flowing into the laser diode, to reduce an input amplitude.
    Type: Application
    Filed: February 22, 2019
    Publication date: March 25, 2021
    Inventors: Toshiki Kishi, Munehiko Nagatani, Shinsuke Nakano, Hideyuki Nosaka
  • Patent number: 10637207
    Abstract: A driver circuit 11 includes a plurality of cascode-connected NMOS transistors, a modulating signal VGN1 is applied to a gate terminal of a lowermost stage transistor TN1 located at a lowermost stage out of the NMOS transistors, and an upper stage bias potential VGN2 that is a sum of a minimum gate-source voltage VGN1min and a maximum drain-source voltage VDS1max of a transistor (TN1) located immediately below an upper stage transistor located at an upper stage above the lowermost stage transistor of the NMOS transistors is applied to the upper stage transistor TN2.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: April 28, 2020
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toshiki Kishi, Munehiko Nagatani, Shinsuke Nakano, Hiroaki Katsurai, Masafumi Nogawa, Hideyuki Nosaka
  • Patent number: 10594014
    Abstract: A connection structure (3) of a high-frequency transmission line according to this invention includes a columnar central conductor (7) having one end connected to a coaxial line and the other end connected to a planar transmission line, a first outer conductor (41) arranged on a side of the one end of the central conductor coaxially with the central conductor, a first dielectric body (42) filled between the first outer conductor and the central conductor, a second outer conductor (61) arranged on a side of the other end of the central conductor coaxially with the central conductor, a second dielectric body (62) filled between the second outer conductor and the central conductor, a third outer conductor (51) arranged between the first outer conductor and the second outer conductor coaxially with the central conductor, and a third dielectric body (52) filled between the third outer conductor and the central conductor.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: March 17, 2020
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hitoshi Wakita, Munehiko Nagatani, Hideyuki Nosaka
  • Patent number: 10425051
    Abstract: An analog multiplexer core circuit (120A) includes a differential pair (121) that includes two transistors (Q1, Q2), a differential pair (122) that includes two transistors (Q3, Q4), a differential pair (123) that includes two transistors (Q5, Q6), and a constant current source (124) that causes a current (IEE) to flow. This analog multiplexer core circuit (120A) time-multiplexes two analog signals (Ain1, Ain2) and outputs a time-multiplexed analog signal (Aout). Each emitter resistor (REA1, REA2, REA3, REA4) is connected to a corresponding one of the transistors (Q1, Q2, Q3, Q4). At this time, a relation of “REA·IEE?the amplitude of an input analog signal” is satisfied. As a result, linearity of response can be ensured by expanding the linear response input range of the differential pairs (121, 122).
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: September 24, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Munehiko Nagatani, Hideyuki Nosaka
  • Publication number: 20190245624
    Abstract: A driver circuit 11 includes a plurality of cascode-connected NMOS transistors, a modulating signal VGN1 is applied to a gate terminal of a lowermost stage transistor TN1 located at a lowermost stage out of the NMOS transistors, and an upper stage bias potential VGN2 that is a sum of a minimum gate-source voltage VGN1min and a maximum drain-source voltage VDS1max of a transistor (TN1) located immediately below an upper stage transistor located at an upper stage above the lowermost stage transistor of the NMOS transistors is applied to the upper stage transistor TN2.
    Type: Application
    Filed: October 16, 2017
    Publication date: August 8, 2019
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toshiki KISHI, Munehiko NAGATANI, Shinsuke NAKANO, Hiroaki KATSURAI, Masafumi NOGAWA, Hideyuki NOSAKA
  • Patent number: 10243664
    Abstract: An optical modulator driver circuit (1) includes an amplifier (50, Q10, Q11, R10-R13), and a current amount adjustment circuit (51) capable of adjusting a current amount of the amplifier (50) in accordance with a desired operation mode. The current amount adjustment circuit (51) includes at least two current sources (IS10) that are individually ON/OFF-controllable in accordance with a binary control signal representing the desired operation mode.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: March 26, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Munehiko Nagatani, Hideyuki Nosaka, Toshihiro Itoh, Koichi Murata, Hiroyuki Fukuyama, Takashi Saida, Shin Kamei, Hiroshi Yamazaki, Nobuhiro Kikuchi, Hiroshi Koizumi, Masafumi Nogawa, Hiroaki Katsurai, Hiroyuki Uzawa, Tomoyoshi Kataoka, Naoki Fujiwara, Hiroto Kawakami, Kengo Horikoshi, Yves Bouvier, Mikio Yoneyama, Shigeki Aisawa, Masahiro Suzuki
  • Publication number: 20190020091
    Abstract: A connection structure (3) of a high-frequency transmission line according to this invention includes a columnar central conductor (7) having one end connected to a coaxial line and the other end connected to a planar transmission line, a first outer conductor (41) arranged on a side of the one end of the central conductor coaxially with the central conductor, a first dielectric body (42) filled between the first outer conductor and the central conductor, a second outer conductor (61) arranged on a side of the other end of the central conductor coaxially with the central conductor, a second dielectric body (62) filled between the second outer conductor and the central conductor, a third outer conductor (51) arranged between the first outer conductor and the second outer conductor coaxially with the central conductor, and a third dielectric body (52) filled between the third outer conductor and the central conductor.
    Type: Application
    Filed: December 22, 2016
    Publication date: January 17, 2019
    Inventors: Hitoshi WAKITA, Munehiko NAGATANI, Hideyuki NOSAKA
  • Patent number: 10177780
    Abstract: In the conventional technique, only an output having a bandwidth identical to the bandwidth of individual DACs has been obtained even by using a plurality of DACs. Also, even when the output of a bandwidth broader than the individual DAC is obtained, there has been a problem associated with asymmetricity of a circuit configuration. In a signal generating device of the present invention, a plurality of normal DACs are combined to realize an analog output of a broader bandwidth beyond the output bandwidth of the individual DACs, and the problem of the asymmetricity of the circuit configuration is also resolved. A desired signal is separated into a low-frequency signal and a high-frequency signal in a frequency domain, and a series of operation of constant (r)-folding the amplitude of the high-frequency signal and shifting it on the frequency axis to superimpose it on the low-frequency signal are made in a digital domain. The output of each DAC is switched by an analog multiplexer.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: January 8, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hiroshi Yamazaki, Munehiko Nagatani, Hideyuki Nosaka, Akihide Sano, Yutaka Miyamoto
  • Patent number: 10141947
    Abstract: In the conventional technique, only an output having a bandwidth identical to the bandwidth of individual DACs has been obtained even by using a plurality of DACs. Also, even when the output of a bandwidth broader than the individual DAC is obtained, there has been a problem associated with asymmetricity of a circuit configuration. In a signal generating device of the present invention, a plurality of normal DACs are combined to realize an analog output of a broader bandwidth beyond the output bandwidth of the individual DACs, and the problem of the asymmetricity of the circuit configuration is also resolved. A desired signal is separated into a low-frequency signal and a high-frequency signal in a frequency domain, and a series of operation of constant (r)-folding the amplitude of the high-frequency signal and shifting it on the frequency axis to superimpose it on the low-frequency signal are made in a digital domain. The output of each DAC is switched by an analog multiplexer.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 27, 2018
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hiroshi Yamazaki, Munehiko Nagatani, Hideyuki Nosaka, Akihide Sano, Yutaka Miyamoto
  • Publication number: 20180219517
    Abstract: An analog multiplexer core circuit (120A) includes a differential pair (121) that includes two transistors (Q1, Q2), a differential pair (122) that includes two transistors (Q3, Q4), a differential pair (123) that includes two transistors (Q5, Q6), and a constant current source (124) that causes a current (IEE) to flow. This analog multiplexer core circuit (120A) time-multiplexes two analog signals (Ain1, Ain2) and outputs a time-multiplexed analog signal (Aout). Each emitter resistor (REA1, REA2, REA3, REA4) is connected to a corresponding one of the transistors (Q1, Q2, Q3, Q4). At this time, a relation of “REA·IEE?the amplitude of an input analog signal” is satisfied. As a result, linearity of response can be ensured by expanding the linear response input range of the differential pairs (121, 122).
    Type: Application
    Filed: July 21, 2016
    Publication date: August 2, 2018
    Inventors: Munehiko NAGATANI, Hideyuki NOSAKA
  • Publication number: 20180191369
    Abstract: In the conventional technique, only an output having a bandwidth identical to the bandwidth of individual DACs has been obtained even by using a plurality of DACs. Also, even when the output of a bandwidth broader than the individual DAC is obtained, there has been a problem associated with asymmetricity of a circuit configuration. In a signal generating device of the present invention, a plurality of normal DACs are combined to realize an analog output of a broader bandwidth beyond the output bandwidth of the individual DACs, and the problem of the asymmetricity of the circuit configuration is also resolved. A desired signal is separated into a low-frequency signal and a high-frequency signal in a frequency domain, and a series of operation of constant (r)-folding the amplitude of the high-frequency signal and shifting it on the frequency axis to superimpose it on the low-frequency signal are made in a digital domain. The output of each DAC is switched by an analog multiplexer.
    Type: Application
    Filed: August 19, 2016
    Publication date: July 5, 2018
    Inventors: Hiroshi Yamazaki, Munehiko Nagatani, Hideyuki Nosaka, Akihide Sano, Yutaka Miyamoto
  • Publication number: 20160087727
    Abstract: An optical modulator driver circuit (1) includes an amplifier (50, Q10, Q11, R10-R13), and a current amount adjustment circuit (51) capable of adjusting a current amount of the amplifier (50) in accordance with a desired operation mode. The current amount adjustment circuit (51) includes at least two current sources (IS10) that are individually ON/OFF-controllable in accordance with a binary control signal representing the desired operation mode.
    Type: Application
    Filed: May 9, 2014
    Publication date: March 24, 2016
    Inventors: Munehiko Nagatani, Hideyuki Nosaka, Toshihiro Itoh, Koichi Murata, Hiroyuki Fukuyama, Takashi Saida, Shin Kamei, Hiroshi Yamazaki, Nobuhiro Kikuchi, Hiroshi Koizumi, Masafumi Nogawa, Hiroaki Katsurai, Hiroyuki Uzawa, Tomoyoshi Kataoka, Naoki Fujiwara, Hiroto Kawakami, Kengo Horikoshi, Yves Bouvier, Mikio Yoneyama, Shigeki Aisawa, Masahiro Suzuki
  • Patent number: 8687968
    Abstract: A vector sum phase shifter includes a 90° phase shifter (1) which generates an in-phase signal (VINI) and a quadrature signal (VINQ) from an input signal (VIN), a four-quadrant multiplier (2I) which changes the amplitude of the in-phase signal (VINI) based on a control signal (CI), a four-quadrant multiplier (2Q) which changes the amplitude of the quadrature signal (VINQ) based on a control signal (CQ), a combiner (3) which combines the in-phase signal (VINI) and the quadrature signal (VINQ), and a control circuit (4). The control circuit (4) includes a voltage generator which generates a reference voltage, and a differential amplifier which outputs the difference signal between a control voltage (VC) and the reference voltage as the control signal (CI, CQ). The differential amplifier performs an analog operation of converting the control voltage (VC) into the control signal (CI, CQ) similar to a sine wave or a cosine wave.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: April 1, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hideyuki Nosaka, Munehiko Nagatani, Shogo Yamanaka, Kimikazu Sano, Koichi Murata, Kiyomitsu Onodera, Takatomo Enoki