Patents by Inventor Munehiko Nagatani

Munehiko Nagatani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8687973
    Abstract: A voltage generator (400) includes a resistor ladder including resistors (4000-4008) which divide a supplied voltage to generate a plurality of reference voltages, a resistor (4009) provided between a power supply voltage (VCC) and one terminal of the resistor ladder, and a resistor (4010) provided between a power supply voltage (VEE) and the other terminal of the resistor ladder.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: April 1, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hideyuki Nosaka, Munehiko Nagatani, Shogo Yamanaka, Kimikazu Sano, Koichi Murata, Kiyomitsu Onodera, Takatomo Enoki
  • Patent number: 8493257
    Abstract: Two D flip-flops (D-FFMA, D-FFMB) output two half-rate signals (DMR-A, DMR-B) by dividing a digital input signal (DM) into two signals and retiming them based on a clock signal (CLK) and a negative-phase clock signal (CLKB). First and second switches (SM1, SM2) are driven by the two half-rate signals (DMR-A, DMR-B). Third and fourth switches (SM3, SM4) are driven by a select signal SW and a negative-phase select signal SWB that have the same frequency as that of the clock signal (CLK) but a different phase from that of the clock signal (CLK). The current supplied from a current source (1) to a load (4) thus becomes a current signal corresponding to a conversion frequency twice the frequency of the clock signal (CLK).
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: July 23, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Munehiko Nagatani, Hideyuki Nosaka, Shogo Yamanaka, Kimikazu Sano, Koichi Murata
  • Publication number: 20110273317
    Abstract: Two D flip-flops (D-FFMA, D-FFMB) output two half-rate signals (DMR-A, DMR-B) by dividing a digital input signal (DM) into two signals and retiming them based on a clock signal (CLK) and a negative-phase clock signal (CLKB). First and second switches (SM1, SM2) are driven by the two half-rate signals (DMR-A, DMR-B). Third and fourth switches (SM3, SM4) are driven by a select signal SW and a negative-phase select signal SWB that have the same frequency as that of the clock signal TO (CLK) but a different phase from that of the clock signal (CLK). The current supplied from a current source (1) to a load (4) thus becomes a current signal corresponding to a conversion frequency twice the frequency of the clock signal (CLK).
    Type: Application
    Filed: January 28, 2010
    Publication date: November 10, 2011
    Inventors: Munehiko Nagatani, Hideyuki Nosaka, Shogo Yamanaka, Kimikazu Sano, Koichi Murata
  • Publication number: 20110236027
    Abstract: A voltage generator (400) includes a resistor ladder including resistors (4000-4008) which divide a supplied voltage to generate a plurality of reference voltages, a resistor (4009) provided between a power supply voltage (VCC) and one terminal of the resistor ladder, and a resistor (4010) provided between a power supply voltage (VEE) and the other terminal of the resistor ladder.
    Type: Application
    Filed: August 12, 2009
    Publication date: September 29, 2011
    Inventors: Hideyuki Nosaka, Munehiko Nagatani, Shogo Yamanaka, Kimikazu Sano, Koichi Murata, Kiyomitsu Onodera, Takatomo Enoki
  • Publication number: 20110150495
    Abstract: A vector sum phase shifter includes a 90° phase shifter (1) which generates an in-phase signal (VINI) and a quadrature signal (VINQ) from an input signal (VIN), a four-quadrant multiplier (2I) which changes the amplitude of the in-phase signal (VINI) based on a control signal (CI), a four-quadrant multiplier (2Q) which changes the amplitude of the quadrature signal (VINQ) based on a control signal (CQ), a combiner (3) which combines the in-phase signal (VINI) and the quadrature signal (VINQ), and a control circuit (4). The control circuit (4) includes a voltage generator which generates a reference voltage, and a differential amplifier which outputs the difference signal between a control voltage (VC) and the reference voltage as the control signal (CI, CQ). The differential amplifier performs an analog operation of converting the control voltage (VC) into the control signal (CI, CQ) similar to a sine wave or a cosine wave.
    Type: Application
    Filed: August 12, 2009
    Publication date: June 23, 2011
    Inventors: Hideyuki Nosaka, Munehiko Nagatani, Shogo Yamanaka, Kimikazu Sano, Koichi Murata, Kiyomitsu Oncodera, Takatomo Enoki