Patents by Inventor Muneyuki Fukuda

Muneyuki Fukuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110129142
    Abstract: A system is provided that realizes both reduction in coordinate error and improvement in throughput and allows observation of a micro-defect. The system includes: a function of measuring an amount of displacement between preliminarily calculated coordinates and an actual specimen position; a function of optimizing a coordinate correction formula so as to minimize the amount of displacement from the measured amount of displacement; and a function of calculating variation of displacement between the preliminarily calculated coordinates and the actual specimen position by statistical processing. When a value of coordinate variation is sufficiently small with respect to the field of view of an image for observation, which is to be a defect observation image, the system acquires only the image for observation without performing acquisition of an image for search, which is to be a defect search image.
    Type: Application
    Filed: July 27, 2009
    Publication date: June 2, 2011
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Noritsugu Takahashi, Muneyuki Fukuda, Tomoyasu Shojo, Naomasa Suzuki, Kenji Obara
  • Patent number: 7952083
    Abstract: An ion beam system includes a sample stage which holds a sample, an ion source which generates an ion beam so that the ion beam is extracted from the ion source along an extraction axis, an irradiation optical system having an irradiation axis along which the ion beam is irradiated toward the sample held on the sample stage, and a charged particle beam observation system for observing a surface of the sample which is machined by the irradiated ion beam. The extraction axis along which the ion beam is extracted from the ion source and the irradiation axis along which the sample is irradiated are inclined with respect to one another.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: May 31, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Shichi, Muneyuki Fukuda, Yoshinori Nakayama, Masaki Hasegawa, Satoshi Tomimatsu
  • Publication number: 20110114476
    Abstract: A sample fabricating method of irradiating a sample with a focused ion beam at an incident angle less than 90 degrees with respect to the surface of the sample, eliminating the peripheral area of a micro sample as a target, turning a specimen stage around a line segment perpendicular to the sample surface as a turn axis, irradiating the sample with the focused ion beam while the incident angle on the sample surface is fixed, and separating the micro sample or preparing the micro sample to be separated. A sample fabricating apparatus for forming a sample section in a sample held on a specimen stage by scanning and deflecting an ion beam, wherein an angle between an optical axis of the ion beam and the surface of the specimen stage is fixed and formation of a sample section is controlled by turning the specimen stage.
    Type: Application
    Filed: January 20, 2011
    Publication date: May 19, 2011
    Inventors: Hiroyasu Shichi, Tohru Ishitani, Hidemi Koike, Kaoru Umemura, Eiichi Seya, Mitsuo Tokuda, Satoshi Tomimatsu, Hideo Kashima, Muneyuki Fukuda
  • Publication number: 20110101223
    Abstract: An electron beam apparatus which includes a sample stage on which a sample is placed, and an electron optical system. The electron optical system includes an electron gun that generates a primary electron beam, an immersion objective lens that converges the primary electron beam on the sample, an ExB deflector that separates a secondary particle, which is generated from irradiation of the primary beam to the sample, from an optical axis of the primary beam, a reflecting member to which the secondary particle collides, an assist electrode which is located under the reflecting member, a plurality of incidental particle detectors that selectively detect a velocity component and an azimuth component of a ternary particle which is generated by the secondary particle colliding to the reflecting member, and a center detector that is located above the reflecting member.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Inventors: Muneyuki Fukuda, Tomoyasu Shojo, Mitsugu Sato, Atsuko Fukada, Naomasa Suzuki, Ichiro Tachibana
  • Publication number: 20110095183
    Abstract: The present invention provides an electron beam measurement technique for measuring the shapes or sizes of portions of patterns on a sample, or detecting a defect or the like. An electron beam measurement apparatus has a unit for irradiating the patterns delineated on a substrate by a multi-exposure method, and classifying the patterns in an acquired image into multiple groups according to an exposure history record. The exposure history record is obtained based on brightness of the patterns and a difference between white bands of the patterns.
    Type: Application
    Filed: December 30, 2010
    Publication date: April 28, 2011
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yasunari SOHDA, Shoji HOTTA, Shinji OKAZAKI, Muneyuki FUKUDA
  • Patent number: 7897936
    Abstract: A sample fabricating method of irradiating a sample with a focused ion beam at an incident angle less than 90 degrees with respect to the surface of the sample, eliminating the peripheral area of a micro sample as a target, turning a specimen stage around a line segment perpendicular to the sample surface as a turn axis, irradiating the sample with the focused ion beam while the incident angle on the sample surface is fixed, and separating the micro sample or preparing the micro sample to be separated. A sample fabricating apparatus for forming a sample section in a sample held on a specimen stage by scanning and deflecting an ion beam, wherein an angle between an optical axis of the ion beam and the surface of the specimen stage is fixed and formation of a sample section is controlled by turning the specimen stage.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: March 1, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyasu Shichi, Tohru Ishitani, Hidemi Koike, Kaoru Umemura, Eiichi Seya, Mitsuo Tokuda, Satoshi Tomimatsu, Hideo Kashima, Muneyuki Fukuda
  • Patent number: 7888639
    Abstract: An object of the invention is to realize a method and an apparatus for processing and observing a minute sample which can observe a section of a wafer in horizontal to vertical directions with high resolution, high accuracy and high throughput without splitting any wafer which is a sample. In an apparatus of the invention, there are included a focused ion beam optical system and an electron optical system in one vacuum container, and a minute sample containing a desired area of the sample is separated by forming processing with a charged particle beam, and there are included a manipulator for extracting the separated minute sample, and a manipulator controller for driving the manipulator independently of a wafer sample stage.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Mitsuo Tokuda, Muneyuki Fukuda, Yasuhiro Mitsui, Hidemi Koike, Satoshi Tomimatsu, Hiroyasu Shichi, Hideo Kashima, Kaoru Umemura
  • Patent number: 7884325
    Abstract: The present invention provides an electron beam measurement technique for measuring the shapes or sizes of portions of patterns on a sample, or detecting a defect or the like. An electron beam measurement apparatus has a unit for irradiating the patterns delineated on a substrate by a multi-exposure method, and classifying the patterns in an acquired image into multiple groups according to an exposure history record. The exposure history record is obtained based on brightness of the patterns and a difference between white bands of the patterns.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 8, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yasunari Sohda, Shoji Hotta, Shinji Okazaki, Muneyuki Fukuda
  • Patent number: 7875849
    Abstract: The present invention provides a charged-particle beam inspection technology that enables to acquire a shadow contrast enhanced image, and to detect a shallow roughness with sufficient sensitively, which is caused by a micro-scale or nano-scale foreign matter in an inspection of a semiconductor device having a circuit pattern or the like. Immersion objective lens is employed as an objective lens for the high-resolution observation. A converged electron beam is obtained due to the objective lens. An assist electrode, a right detector and a left detector are provided in the objective lens. A velocity component of a secondary electron caused by the irradiation of the sample with an electron beam is discriminated. An azimuth component is further discriminated.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: January 25, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Muneyuki Fukuda, Tomoyasu Shojo, Mitsugu Sato, Atsuko Fukada, Naomasa Suzuki, Ichiro Tachibana
  • Patent number: 7847249
    Abstract: A technology whereby removal of magnetic hysteresis is enabled in short time in parallel with a process for stage transfer, and so forth. There is executed a magnetic hysteresis removal sequence whereby current for exciting an electromagnetic coil prior to acquisition of an image is always set to a predetermined variation value against a target value, thereby obtaining information on an image, and so forth, when a diameter of a primary electron beam, converged on the specimen, becomes smaller than dimensions displayed by one pixel of an image to be acquired.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: December 7, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Noritsugu Takahashi, Muneyuki Fukuda, Hiroyuki Ito, Atsuko Fukada, Masashi Sakamoto, Satoshi Takada
  • Patent number: 7725278
    Abstract: After completion of an arbitrary device process, an apparatus for micro-sample extraction extracts a part of a wafer as a micro-sample of a size equal to or larger than a repetition pattern with a probe and places the extracted micro-sample to a micro-sample storage, and the micro-sample storage is stored into an apparatus for micro-sample storage. The wafer is subjected to a post process and an observation desired position is determined in response to a failure analysis requirement. After that, the micro-sample is unloaded from the micro-sample storage by an apparatus for additional processing of the micro-sample and is placed onto an observation sample holder. By performing an additional process in the observation desired position, a failure analysis sample is prepared, and analysis information obtained by an apparatus for failure analysis is output.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: May 25, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Satoshi Tomimatsu, Hiroyasu Shichi, Muneyuki Fukuda, Kaoru Umemura
  • Patent number: 7709062
    Abstract: A hole in a sample from which a sample piece has been extracted with a focused ion beam is filled at high speed using ion beam gas assisted deposition. A method of filling the hole by using the ion beam includes a step of irradiating the hole formed in a face of the sample with the ion beam to thereby form an ion beam gas-assisted deposition layer in the hole. The ion beam gas-assisted deposition layer is formed in the hole while controlling the area to which the ion beam is irradiated so as to cause the ion beam to fall on a part of a side wall of the hole and to not fall on another part of the side wall in an area scanned with the ion beam. The filled hole may then be covered with a protective film.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: May 4, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyasu Shichi, Muneyuki Fukuda, Isamu Sekihara, Satoshi Tomimatsu, Kaoru Umemura
  • Patent number: 7679056
    Abstract: The present invention provides a pattern inspection technique that enables measurement and inspection of a fine pattern by a charged particle beam to be performed with high throughput.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: March 16, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiromasa Yamanashi, Muneyuki Fukuda, Sayaka Tanimoto, Yasunari Sohda
  • Publication number: 20100059676
    Abstract: Disclosed herewith is a charged particle beam apparatus capable of controlling each of the probe current and the objective divergence angle to obtain a desired probe current and a desired objective divergence angle in accordance with the diameter of the subject objective aperture. The apparatus is configured to include an objective aperture between first and second condenser lenses to calculate and set a control value of a first condenser lens in accordance with the diameter of the hole of the objective aperture so as to obtain a desired probe current and calculate a control value of a second condenser lens setting device in accordance with the diameter of the hole of the objective divergence angle and the control value of the second condenser lens setting device, thereby setting the calculated control value for the second condenser lens setting device to control the objective divergence angle.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 11, 2010
    Inventors: Tomoyasu SHOJO, Muneyuki Fukuda, Naomasa Suzuki, Noritsugu Takahashi
  • Patent number: 7667212
    Abstract: Certain film deposition and selective etching technology may involve scanning of a charged particle beam along with a deposition gas and etching gas, respectively. In conventional methods, unfortunately, the deposition rate or the selective ratio is oftentimes decreased depending on optical system setting, scan spacing, dwell time, loop time, substrate, etc. Accordingly, an apparatus is provided for finding an optical system setting, a dwell time, and a scan spacing. These parameters are found to realize the optimal scanning method of the charged particle beam from the loop time dependence of the deposition rate or etching rate. This deposition rate or etching rate are measurements stored in advance for a desired irradiation region where film deposition or selective etching should be performed. The apparatus displays a result of its judgment on a display device.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 23, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Muneyuki Fukuda, Hiroyasu Shichi
  • Patent number: 7655907
    Abstract: It is to provide a technology that can quickly process many measurement points on a substrate by a primary charged particle beam. In a control system, with respect to each measurement point (irradiation position of the primary charged particle beam) on a wafer, a calculator obtains a probability of a surface potential at a relevant measurement point that is obtained from a surface potential distribution function of the wafer and is stored in a data storage unit. Based on the probability, the calculator determines an amplitude of a set parameter (for example, retarding voltage) of charged particle optics at the relevant measurement point. Then the calculator checks the focus state of the primary charged particle beam by changing the set parameter in the range of the determined amplitude, and determines the set parameter to be used for measurement.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: February 2, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Sayaka Tanimoto, Hiromasa Yamanashi, Muneyuki Fukuda, Yasunari Sohda
  • Publication number: 20090256076
    Abstract: A lower pole piece of an electromagnetic superposition type objective lens is divided into an upper magnetic path and a lower magnetic path. A voltage nearly equal to a retarding voltage is applied to the lower magnetic path. An objective lens capable of acquiring an image with a higher resolution and a higher contrast than a conventional image is provided. An electromagnetic superposition type objective lens includes a magnetic path that encloses a coil, a cylindrical or conical booster magnetic path that surrounds an electron beam, a control magnetic path that is interposed between the coil and sample, an accelerating electric field control unit that accelerates the electron beam using a booster power supply, a decelerating electric field control unit that decelerates the electron beam using a stage power supply, and a suppression unit that suppresses electric discharge of the sample using a control magnetic path power supply.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 15, 2009
    Inventors: Muneyuki FUKUDA, Naomasa SUZUKI, Tomoyasu SHOJO, Noritsugu TAKAHASHI
  • Patent number: 7557347
    Abstract: A charged particle beam apparatus for acquiring high-definition and highly contrasted observation images by detecting efficiently secondary signals without increasing aberration of the primary electron beam, detecting defects from observation images and thus increasing the inspection speed and enhancing the sensitivity of inspection. The desired area of the sample is scanned with a primary charged particle beam, and the secondary charged particles generated secondarily from the area by the irradiation of the primary charged particle beam are led to collide with the secondary electron conversing electrode, and then the secondary electrons generated by the first E×B deflector 31 arranged through an insulator on the surface of the secondary electron conversing electrode on the side of the sample is absorbed by the detector.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: July 7, 2009
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tomoyasu Shojo, Muneyuki Fukuda, Naomasa Suzuki
  • Patent number: 7550750
    Abstract: An object of the invention is to realize a method and an apparatus for processing and observing a minute sample which can observe a section of a wafer in horizontal to vertical directions with high resolution, high accuracy and high throughput without splitting any wafer which is a sample. In an apparatus of the invention, there are included a focused ion beam optical system and an electron optical system in one vacuum container, and a minute sample containing a desired area of the sample is separated by forming processing with a charged particle beam, and there are included a manipulator for extracting the separated minute sample, and a manipulator controller for driving the manipulator independently of a wafer sample stage.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: June 23, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Mitsuo Tokuda, Muneyuki Fukuda, Yasuhiro Mitsui, Hidemi Koike, Satoshi Tomimatsu, Hiroyasu Shichi, Hideo Kashima, Kaoru Umemura
  • Publication number: 20090152462
    Abstract: It is an object of the present invention to improve the stability of a gas field ionization ion source. A GFIS according to the present invention is characterized in that the aperture diameter of the extraction electrode can be set to any of at least two different values or the distance from the apex of the emitter to the extraction electrode can be set to any of at least two different values. In addition, solid nitrogen is used for cooling. According to the present invention, it is possible to not only let divergently emitted ions go through the aperture of the extraction electrode but also, in behalf of differential pumping, reduce the diameter of the aperture. In addition, it is possible to reduce the physical vibration of the cooling means. Consequently, it is possible to provide a highly stable GFIS and a scanning charged particle microscope equipped with such a GFIS.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 18, 2009
    Inventors: Tohru Ishitani, Yoichi Ose, Hiroyasu Shichi, Shinichi Matsubara, Tomihiro Hashizume, Muneyuki Fukuda