Patents by Inventor Murat Kerem Akarvardar

Murat Kerem Akarvardar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170256462
    Abstract: A method of forming SRB finFET fins first with a cut mask that is perpendicular to the subsequent fin direction and then with a cut mask that is parallel to the fin direction and the resulting device are provided. Embodiments include forming a SiGe SRB on a substrate; forming a Si layer over the SRB; forming an NFET channel and a SiGe PFET channel in the Si layer; forming cuts through the NFET and PFET channels, respectively, and the SRB down to the substrate, the cuts formed on opposite ends of the substrate and perpendicular to the NFET and PFET channels; forming fins in the SRB and the NFET and PFET channels, the fins formed perpendicular to the cuts; forming a cut between the NFET and PFET channels, the cut formed parallel to the fins; filling the cut with oxide; and recessing the oxide down to the SRB.
    Type: Application
    Filed: December 9, 2016
    Publication date: September 7, 2017
    Inventors: Ruilong XIE, Murat Kerem AKARVARDAR, Andreas KNORR
  • Patent number: 9716174
    Abstract: A semiconductor stack of a FinFET in fabrication includes a bulk silicon substrate, a selectively oxidizable sacrificial layer over the bulk substrate and an active silicon layer over the sacrificial layer. Fins are etched out of the stack of active layer, sacrificial layer and bulk silicon. A conformal oxide deposition is made to encapsulate the fins, for example, using a HARP deposition. Relying on the sacrificial layer having a comparatively much higher oxidation rate than the active layer or substrate, selective oxidization of the sacrificial layer is performed, for example, by annealing. The presence of the conformal oxide provides structural stability to the fins, and prevents fin tilting, during oxidation. Selective oxidation of the sacrificial layer provides electrical isolation of the top active silicon layer from the bulk silicon portion of the fin, resulting in an SOI-like structure. Further fabrication may then proceed to convert the active layer to the source, drain and channel of the FinFET.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: July 25, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Murat Kerem Akarvardar, Jody A. Fronheiser, Ajey Poovannummoottil Jacob
  • Patent number: 9679972
    Abstract: A semiconductor structure can include a substrate and a substrate layer. The substrate can be formed of silicon and the substrate layer can be formed of silicon germanium. Above the substrate and under the substrate layer there can be provided a multilayer substructure. The multilayer substructure can include a first layer and a second layer. The first layer can be formed of a first material and the second layer can be formed of second material. A method can include forming a multilayer substructure on a substrate, annealing the multilayer substructure, and forming a substrate layer on the multilayer substructure.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: June 13, 2017
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Jody Fronheiser, Murat Kerem Akarvardar, Stephen Bedell, Joel Kanyandekwe
  • Publication number: 20170133406
    Abstract: A semiconductor structure, comprising a semiconductor substrate and at least one fin coupled to the semiconductor substrate, wherein the fin comprises at least two active regions and at least one insulator region, wherein all active regions and all insulator regions are stacked and each insulator region is disposed between two active regions. Methods, apparatus, and systems for forming such a semiconductor structure.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 11, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Murat Kerem Akarvardar
  • Patent number: 9601383
    Abstract: A semiconductor structure for a FinFET in fabrication is provided, the structure including a bulk semiconductor substrate initially with a hard mask over the substrate. Isolation trenches between regions of the structure where the fins will be are formed prior to the fins, and filled with selectively removable sacrificial isolation material. Remains of the hard mask are removed and another hard mask formed over the structure with filled isolation trenches. Fins are then formed throughout the structure, including the regions of sacrificial isolation material, which is thereafter selectively removed.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: March 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: Murat Kerem Akarvardar
  • Patent number: 9589849
    Abstract: One illustrative method disclosed herein includes, among other things, forming a plurality of initial fins that have the same initial axial length and the same initial strain above a substrate, performing at least one etching process so as to cut a first fin to a first axial length and to cut a second fin to a second axial length that is less than the first axial length, wherein the cut first fin retains a first amount of the initial strain and the cut second fin retains about zero of the initial strain or a second amount of the initial strain that is less than the first amount, and forming gate structures around the first and second cut fins to form FinFET devices.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 7, 2017
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Bruce Doris, Ali Khakifirooz
  • Patent number: 9590040
    Abstract: One illustrative method disclosed herein includes, among other things, forming a sacrificial fin structure above a semiconductor substrate, forming a layer of insulating material around the sacrificial fin structure, removing the sacrificial fin structure so as to define a replacement fin cavity in the layer of insulating material that exposes an upper surface of the substrate, forming a replacement fin in the replacement fin cavity on the exposed upper surface of the substrate, recessing the layer of insulating material, and forming a gate structure around at least a portion of the replacement fin exposed above the recessed layer of insulating material.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: March 7, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Ajey Poovannummoottil Jacob
  • Patent number: 9576857
    Abstract: A method of forming SRB finFET fins first with a cut mask that is perpendicular to the subsequent fin direction and then with a cut mask that is parallel to the fin direction and the resulting device are provided. Embodiments include forming a SiGe SRB on a substrate; forming a Si layer over the SRB; forming an NFET channel and a SiGe PFET channel in the Si layer; forming cuts through the NFET and PFET channels, respectively, and the SRB down to the substrate, the cuts formed on opposite ends of the substrate and perpendicular to the NFET and PFET channels; forming fins in the SRB and the NFET and PFET channels, the fins formed perpendicular to the cuts; forming a cut between the NFET and PFET channels, the cut formed parallel to the fins; filling the cut with oxide; and recessing the oxide down to the SRB.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Murat Kerem Akarvardar, Andreas Knorr
  • Patent number: 9570588
    Abstract: Methods for fabricating transistor structures are provided, the methods including: forming a fin structure with an upper fin portion and a lower fin portion, the upper fin portion including a sacrificial material; forming a gate structure over the fin; selectively removing the upper fin portion to form a tunnel between the gate structure and lower fin portion; and providing a channel material in the tunnel to define the channel region of the gate structure. The sacrificial material may be a material that can be selectively etched without etching the material of the lower fin portion. The channel material may further be provided to form source and drain regions of the transistor structure, which may result in a junctionless FinFET structure.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: February 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Murat Kerem Akarvardar, Steven Bentley
  • Patent number: 9564486
    Abstract: A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: February 7, 2017
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES INC., RENESAS ELECTRONICS CORPORATION
    Inventors: Murat Kerem Akarvardar, Steven John Bentley, Kangguo Cheng, Bruce B. Doris, Jody Fronheiser, Ajey Poovannummoottil Jacob, Ali Khakifirooz, Toshiharu Nagumo
  • Patent number: 9536990
    Abstract: One method disclosed herein includes, among other things, forming a patterned fin having a thickness that is equal to or greater than a target final fin height for a replacement fin, performing an etching process through the patterned fin etch mask to form a plurality of trenches in a semiconductor substrate to define a substrate fin and forming a recessed layer of insulating material in the trenches so as to expose the patterned fin etch. The method also includes forming a layer of CTE-matching material around the exposed patterned fin etch mask, removing the patterned fin etch mask to thereby define a replacement fin cavity and expose a surface of the substrate fin, forming the replacement fin on the substrate fin and in the replacement fin cavity, removing the layer of CTE-matching material and forming a gate structure around at least a portion of the replacement fin.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: January 3, 2017
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Murat Kerem Akarvardar, Jody A. Fronheiser, Bruce Doris
  • Patent number: 9530869
    Abstract: One illustrative method disclosed herein includes, among other things, forming a layer of insulating material in the source/drain regions of the device, wherein the layer of insulating material has an upper surface that is substantially planar with an upper surface of a gate cap layer, recessing the layer of insulating material such that its recessed upper surface exposes a surface of the fin, performing another etching process to remove at least a portion of the fin and thereby define a recessed fin trench positioned above the recessed fin, and forming an epitaxial semiconductor material that is at least partially positioned in the recessed fin trench.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Jody A. Fronheiser, Steven Bentley
  • Patent number: 9515088
    Abstract: A semiconductor structure is provided with fins on a substrate, including: a first active layer with a first source, first channel, and first drain, each doped with the same concentration of dopant as each other; a dielectric layer on the first active layer; a second active layer with a second source, second channel, and second drain, each doped with the same concentration of dopant as each other; and a first and second gate disposed on an opposing first and second sidewall of the channels, respectively. A method for making such a semiconductor structure is also provided.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: December 6, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: Murat Kerem Akarvardar
  • Publication number: 20160351681
    Abstract: One method disclosed herein includes, among other things, forming a patterned fin having a thickness that is equal to or greater than a target final fin height for a replacement fin, performing an etching process through the patterned fin etch mask to form a plurality of trenches in a semiconductor substrate to define a substrate fin and forming a recessed layer of insulating material in the trenches so as to expose the patterned fin etch. The method also includes forming a layer of CTE-matching material around the exposed patterned fin etch mask, removing the patterned fin etch mask to thereby define a replacement fin cavity and expose a surface of the substrate fin, forming the replacement fin on the substrate fin and in the replacement fin cavity, removing the layer of CTE-matching material and forming a gate structure around at least a portion of the replacement fin.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 1, 2016
    Inventors: Murat Kerem Akarvardar, Jody A. Fronheiser, Bruce Doris
  • Patent number: 9508848
    Abstract: One illustrative method disclosed herein includes, among other things, removing at least a portion of a vertical height of portions of an overall fin structure that are not covered by a gate structure so as to result in the definition of a remaining portion of the overall fin structure that is positioned under the gate structure, wherein the remaining portion comprises a channel portion and a lower portion located under the channel portion. The method continues with the formation of a layer of heat-expandable material (HEM), performing a heating process on the HEM so as to cause the HEM to expand, recessing the HEM so as to expose edges of the channel portion and growing a semiconductor material above the HEM using the exposed edges of the channel portion as a growth surface.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: November 29, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Jody A. Fronheiser
  • Publication number: 20160343806
    Abstract: Methods for fabricating interface passivation layers in a circuit structure are provided. The method includes forming a silicon-germanium layer over a substrate, removing a native oxide layer from an upper surface of the silicon-germanium layer, and exposing the upper surface of the silicon-germanium layer to an ozone-containing solution, resulting in an interface passivation layer with a higher concentration of germanium-dioxide present than germanium-oxide. The resulting interface passivation layer may be part of a gate structure, in which the channel region of the gate structure includes the silicon-germanium layer and the interface passivation layer between the channel region and the dielectric layer of the gate structure has a high concentration of germanium-dioxide.
    Type: Application
    Filed: May 21, 2015
    Publication date: November 24, 2016
    Applicants: GLOBALFOUNDRIES INC., LAM RESEARCH CORPORATION, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shariq SIDDIQUI, Jody A. FRONHEISER, Murat Kerem AKARVARDAR, Purushothaman SRINIVASAN, Lisa F. EDGE, Gangadhara Raja MUTHINTI, Georges JACOBI, Randolph KNARR
  • Patent number: 9502507
    Abstract: One illustrative method disclosed herein includes, among other things, removing at least a portion of a vertical height of portions of an overall fin structure that are not covered by a gate structure so as to result in the definition of a fin cavity in a layer of insulating material and the definition of a remaining portion of the overall fin structure that is positioned under the gate structure, wherein the remaining portion comprises a channel portion and a lower portion located under the channel portion. The method continues with the formation of a first semiconductor material within at least the fin cavity and the formation of a second semiconductor material on the first semiconductor material and on exposed edges of the channel portion.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: November 22, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Jody A. Fronheiser
  • Patent number: 9455140
    Abstract: One illustrative method disclosed herein includes, among other things, performing first and second in situ doping, epitaxial deposition processes to form first and second layers of in situ doped epi semiconductor material, respectively, above a semiconductor substrate, wherein one of the first and second layers has a high level of germanium and a low level of P-type dopant material and the other of the first and second layers has a low level of germanium and a high level of P-type dopant material, and performing a mixing thermal anneal process on the first and second layers so as to form the final silicon germanium material having a high level of germanium and a high level of P-type dopant material.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: September 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ajey Poovannummoottil Jacob, Jody A. Fronheiser, Murat Kerem Akarvardar
  • Publication number: 20160268260
    Abstract: Reducing a chance of punch-through in a FinFET structure includes providing a substrate, creating a blanket layer of semiconductor material with impurities therein over the substrate, masking a portion of the blanket layer, creating epitaxial semiconductor material on an unmasked portion of the structure, removing the mask, and etching the structure to create n-type raised structure(s) and p-type raised structure(s), a bottom portion of the raised structure(s) being surrounded by isolation material. A middle portion of the raised structure(s) includes a semiconductor material with impurities therein, the middle portion extending across the raised structure(s), and a top portion including a semiconductor material lacking added impurities.
    Type: Application
    Filed: February 23, 2016
    Publication date: September 15, 2016
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Kwanyong LIM, Murat Kerem AKARVARDAR
  • Publication number: 20160268400
    Abstract: Commonly fabricated FinFET type semiconductor devices with different (i.e., both taller and shorter) heights of an entirety of or only the channel region of some of the fins. Where only the channel of some of the fins has a different height, the sources and drains have a common height higher than those channels. The different fin heights are created by recessing some of the fins, and where only the channels have different heights, the difference is created by exposing a top surface of each channel intended to be shorter, the other channels being masked, and partially recessing the exposed channel(s). In both cases, the mask(s) may then be removed and conventional FinFET processing may proceed.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 15, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Murat Kerem AKARVARDAR, Jody A. FRONHEISER, Ajey Poovannummoottil JACOB