Patents by Inventor Murat Kerem Akarvardar

Murat Kerem Akarvardar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150140761
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Application
    Filed: January 19, 2015
    Publication date: May 21, 2015
    Applicants: GLOBALFOUNDRIES INC., International Business Machines Corporation, Renesas Electronics Corporation
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Steven Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20150137308
    Abstract: A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicants: International Business Machines Corporation, Renesas Electronics Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Steven John Bentley, Kangguo Cheng, Bruce B. Doris, Jody Fronheiser, Ajey Poovannummoottil Jacob, Ali Khakifirooz, Toshiharu Nagumo
  • Publication number: 20150123166
    Abstract: are methods and devices that involve formation of alternating layers of different semiconductor materials in the channel region of FinFET devices. The methods and devices disclosed herein involve forming a doped silicon substrate fin and thereafter forming a layer of silicon/germanium around the substrate fin. The methods and devices also include forming a gate structure around the layer of silicon/germanium using gate first or gate last techniques.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Michael Hargrove, Ruilong Xie
  • Patent number: 9006077
    Abstract: Methods for fabricating integrated circuits and FinFET transistors on bulk substrates with active channel regions isolated from the substrate with an insulator are provided. In accordance with an exemplary embodiment, a method for fabricating an integrated circuit includes forming fin structures overlying a semiconductor substrate, wherein each fin structure includes a channel material and extends in a longitudinal direction from a first end to a second end. The method deposits an anchoring material over the fin structures. The method includes recessing the anchoring material to form trenches adjacent the fin structures, wherein the anchoring material remains in contact with the first end and the second end of each fin structure. Further, the method forms a void between the semiconductor substrate and the channel material of each fin structure with a gate length independent etching process, wherein the channel material of each fin structure is suspended over the semiconductor substrate.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: April 14, 2015
    Assignee: GlobalFoundries, Inc.
    Inventors: Murat Kerem Akarvardar, Ajey Poovannummoottil Jacob
  • Patent number: 8987094
    Abstract: A fin field effect transistor integrated circuit (FinFET IC) has a plurality of fins extending from a semiconductor substrate, where a trough is defined between adjacent fins. A second dielectric is positioned within the trough, and a protruding portion of the fins extends above the second dielectric. A first dielectric is positioned between the fin sidewalls and the second dielectric.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: March 24, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Murat Kerem Akarvardar, Xiuyu Cai, Ajey Poovannummoottil Jacob
  • Publication number: 20150061014
    Abstract: A first semiconductor structure includes a bulk silicon substrate and one or more original silicon fins coupled to the bulk silicon substrate. A dielectric material is conformally blanketed over the first semiconductor structure and recessed to create a dielectric layer. A first cladding material is deposited adjacent to the original silicon fin, after which the original silicon fin is removed to form a second semiconductor structure having two fins that are electrically isolated from the bulk silicon substrate. A second cladding material is patterned adjacent to the first cladding material to form a third semiconductor structure having four fins that are electrically isolated from the bulk silicon substrate.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Ajey Poovannummoottil JACOB, Murat Kerem AKARVARDAR, Steven John BENTLEY, Bartlomiej Jan PAWLAK
  • Publication number: 20150056781
    Abstract: Methods for fabricating integrated circuits and FinFET transistors on bulk substrates with active channel regions isolated from the substrate with an insulator are provided. In accordance with an exemplary embodiment, a method for fabricating an integrated circuit includes forming fin structures overlying a semiconductor substrate, wherein each fin structure includes a channel material and extends in a longitudinal direction from a first end to a second end. The method deposits an anchoring material over the fin structures. The method includes recessing the anchoring material to form trenches adjacent the fin structures, wherein the anchoring material remains in contact with the first end and the second end of each fin structure. Further, the method forms a void between the semiconductor substrate and the channel material of each fin structure with a gate length independent etching process, wherein the channel material of each fin structure is suspended over the semiconductor substrate.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Murat Kerem Akarvardar, Ajey Poovannummoottil Jacob
  • Publication number: 20150021709
    Abstract: Semiconductor structures and fabrication methods are provided integrating different fin device architectures on a common wafer, for instance, within a common functional device area of the wafer. The method includes: facilitating fabricating multiple fin device architectures within a common functional device wafer area by: providing a wafer with at least one fin disposed over a substrate, the fin including an isolation layer; modifying the fin(s) in a first region of the fin(s), while protecting the fin in a second region of the fin(s); and proceeding with forming one or more fin devices of a first architectural type in the first region and one or more fin devices of a second architectural type in the second region. The first architectural type and the second architectural type are different fin device architectures, such as different fin device isolation architectures, different fin type transistor architectures, or different fin-type devices or structures.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventors: Ajey P. JACOB, Murat Kerem AKARVARDAR, Michael John HARGROVE
  • Publication number: 20150021663
    Abstract: A FinFET has a structure including a semiconductor substrate, semiconductor fins and a gate spanning the fins. The fins each have a bottom region coupled to the substrate and a top active region. Between the bottom and top fin regions is a middle stack situated between a vertically elongated source and a vertically elongated drain. The stack includes a top channel region and a dielectric region immediately below the channel region, providing electrical isolation of the channel. The partial isolation structure can be used with both gate first and gate last fabrication processes.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventors: Murat Kerem AKARVARDAR, Jody A. Fronheiser, Ajey Poovannummoottil JACOB
  • Publication number: 20150021691
    Abstract: A semiconductor stack of a FinFET in fabrication includes a bulk silicon substrate, a selectively oxidizable sacrificial layer over the bulk substrate and an active silicon layer over the sacrificial layer. Fins are etched out of the stack of active layer, sacrificial layer and bulk silicon. A conformal oxide deposition is made to encapsulate the fins, for example, using a HARP deposition. Relying on the sacrificial layer having a comparatively much higher oxidation rate than the active layer or substrate, selective oxidization of the sacrificial layer is performed, for example, by annealing. The presence of the conformal oxide provides structural stability to the fins, and prevents fin tilting, during oxidation. Selective oxidation of the sacrificial layer provides electrical isolation of the top active silicon layer from the bulk silicon portion of the fin, resulting in an SOI-like structure. Further fabrication may then proceed to convert the active layer to the source, drain and channel of the FinFET.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventors: Murat Kerem AKARVARDAR, Jody A. FRONHEISER, Ajey Poovannummoottil JACOB
  • Publication number: 20150014776
    Abstract: A fin field effect transistor integrated circuit (FinFET IC) has a plurality of fins extending from a semiconductor substrate, where a trough is defined between adjacent fins. A second dielectric is positioned within the trough, and a protruding portion of the fins extends above the second dielectric. A first dielectric is positioned between the fin sidewalls and the second dielectric.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 15, 2015
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Murat Kerem Akarvardar, Xiuyu Cai, Ajey Poovannummoottil Jacob
  • Publication number: 20140374807
    Abstract: Aspects of the present invention relate to an approach for forming an integrated circuit having a set of fins on a silicon substrate, with the set of fins being formed according to a predetermined pattern. In situ doping of the fins with an N-type dopant prior to deposition of an epitaxial layer minimizes punch through leakage whilst an epitaxial depositional process applies a cladding layer on the doped fins, the deposition resulting in a multigate device having improved device isolation.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20140361377
    Abstract: Embodiments herein provide device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of high mobility channel fins is formed over the retrograde doped layer, each of the set of high mobility channel fins comprising a high mobility channel material (e.g., silicon or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of high mobility channel fins to prevent carrier spill-out to the high mobility channel fins.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Ajey Poovannummoottil Jacob, Steven John Bentley, Murat Kerem Akarvardar, Jody Alan Fronheiser, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Toshiharu Nagumo