Patents by Inventor Mustafa Lotya

Mustafa Lotya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954547
    Abstract: A wireless connection is established between at least two electronic modules (M1, M2) disposed separate from one another in a smartcard having a coupling frame so that the two modules may communicate (signals, data) with each other. The two modules may each have module antennas (MA-1, MA-2), and may be disposed in respective two openings (MO-1, MO-2) of a coupling frame (CF). A coupling antenna (CPA) having two coupler coils (CC-1, CC-2) disposed close to the two modules antennas of the two modules. The coupling antenna may have only the two coupler coils (CC-1, CC-2), connected with one another, without the peripheral card antenna (CA) component of a conventional booster antenna (BA). Energy harvesting is disclosed.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: April 9, 2024
    Assignee: AmaTech Group Limited
    Inventors: Mustafa Lotya, David Finn
  • Patent number: 11928537
    Abstract: A “core” or “inlay” for a smartcard may comprise a first metal layer and a second metal layer, and may be formed by folding a single metal layer upon itself. A module cavity may be formed in the first metal layer by laser cutting, prior to laminating. An adhesive layer may be disposed between the two metal layers. A module opening may be formed in the second metal layer by milling, after laminating the first metal layer to the second metal layer. A slit in a metal layer may extend from an outer edge of the layer to the cavity or opening, thereby forming a coupling frame. The slit may have a termination hole at either end or at both ends of the slit. The slits of two metal layers may be positioned differently than one another.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: March 12, 2024
    Assignee: AmaTech Group Limited
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11907791
    Abstract: Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: February 20, 2024
    Assignee: Amatech Group Lijited
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11836565
    Abstract: RFID devices comprising (i) a transponder chip module (TCM) having an RFIC chip (IC) and a module antenna (MA), and (ii) a coupling frame (CF) having an electrical discontinuity comprising a slit (S) or non-conductive stripe (NCS). The coupling frame may be disposed closely adjacent the transponder chip module so that the slit overlaps the module antenna. The RFID device may be a payment object such as a jewelry item having a metal component modified with a slit (S) to function as a coupling frame. The coupling frame may be moved (such as rotated) to position the slit to selectively overlap the module antennas (MA) of one or more transponder chip modules (TCM-1, TCM-2) disposed in the payment object, thereby selectively enhancing (including enabling) contactless communication between a given transponder chip module in the payment object and another RFID device such as an external contactless reader. The coupling frame may be tubular. A card body construction for a metal smart card is disclosed.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: December 5, 2023
    Assignee: AmaTech Group Limited
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11645487
    Abstract: Smartcard (SC) having a metal card body (MCB) which is a coupling frame (CP) with a slit (S), and a coupling loop antenna/structure (CLA, CLS) connected to termination points (TP) on each side of the slit (S) and coupled with the module antenna (MA) of a transponder chip module (TCM). A portion of the card body (CB) may be metal and another, coplanar portion of the card body may be a synthetic material which may be transparent or translucent. Currents may be collected from the interface between the two portions. The card body (CB) may have two metal layers of different materials, adhesively joined to each other using a thermosetting epoxy that converts from B-stage to C-stage during lamination.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 9, 2023
    Assignee: AmaTech Group Limited
    Inventor: Mustafa Lotya
  • Publication number: 20230136903
    Abstract: A wireless connection is established between at least two electronic modules (M1, M2) disposed separate from one another in a smartcard having a coupling frame so that the two modules may communicate (signals, data) with each other. The two modules may each have module antennas (MA-1, MA-2), and may be disposed in respective two openings (MO-1, MO-2) of a coupling frame (CF). A coupling antenna (CPA) having two coupler coils (CC-1, CC-2) disposed close to the two modules antennas of the two modules. The coupling antenna may have only the two coupler coils (CC-1, CC-2), connected with one another, without the peripheral card antenna (CA) component of a conventional booster antenna (BA). Energy harvesting is disclosed.
    Type: Application
    Filed: August 5, 2022
    Publication date: May 4, 2023
    Inventors: Mustafa Lotya, David Finn
  • Publication number: 20230137393
    Abstract: Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
    Type: Application
    Filed: July 19, 2022
    Publication date: May 4, 2023
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11630981
    Abstract: Connection bridges (CBR) for dual-interface transponder chip modules (TCM) 200 may have an area which is substantially equal to or greater than an area of a contact pad (CP) of a contact pad array (CPA). A given connection bridge may be L-shaped and may comprise (i) a first portion disposed external to the contact pad array and extending parallel to the insertion direction, and (ii) a second portion extending from an end of the first portion perpendicular to the insertion direction to within the contact pad array (CPA) such as between C1 and C5. The connection bridge may extend around a corner of the contact pad array, may be large enough to accommodate wire bonding, and may be integral with a coupling frame (CF) extending around the contact pad array. The transponder chip modules may be integrated into a smart card (SC).
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: April 18, 2023
    Assignee: AMATECH GROUP LIMITED
    Inventors: David Finn, Mustafa Lotya
  • Publication number: 20230101906
    Abstract: RFID devices comprising (i) a transponder chip module (TCM, 1410) having an RFIC chip (IC) and a module antenna (MA), and (ii) a coupling frame (CF) having an electrical discontinuity comprising a slit (S) or non-conductive stripe (NCS). The coupling frame may be disposed closely adjacent the transponder chip module so that the slit overlaps the module antenna. The RFID device may be a payment object such as a jewelry item having a metal component modified with a slit (S) to function as a coupling frame. The coupling frame may be moved (such as rotated) to position the slit to selectively overlap the module antennas (MA) of one or more transponder chip modules (TCM-1, TCM-2) disposed in the payment object, thereby selectively enhancing (including enabling) contactless communication between a given transponder chip module in the payment object and another RFID device such as an external contactless reader. The coupling frame may be tubular. A card body construction for a metal smart card is disclosed.
    Type: Application
    Filed: June 7, 2022
    Publication date: March 30, 2023
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11568195
    Abstract: Metal layers of a smartcard may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Pre-laminated metal layers having an array of card sites, with each position having a defined area prepared for the later implanting of a transponder chip module characterized by different sized perforations and gaps around this defined area adjacent to the RFID slit(s), to facilitate the quick removal of the metal in creating a pocket to accept a transponder chip module.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: January 31, 2023
    Assignee: AMATECH GROUP LIMITED
    Inventors: Mustafa Lotya, Darren Molloy, David Finn
  • Publication number: 20230027226
    Abstract: A “core” or “inlay” for a smartcard may comprise a first metal layer and a second metal layer, and may be formed by folding a single metal layer upon itself. A module cavity may be formed in the first metal layer by laser cutting, prior to laminating. An adhesive layer may be disposed between the two metal layers. A module opening may be formed in the second metal layer by milling, after laminating the first metal layer to the second metal layer. A slit in a metal layer may extend from an outer edge of the layer to the cavity or opening, thereby forming a coupling frame. The slit may have a termination hole at either end or at both ends of the slit. The slits of two metal layers may be positioned differently than one another.
    Type: Application
    Filed: May 24, 2022
    Publication date: January 26, 2023
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11551051
    Abstract: Coupling frames (CF) for smartcards (SC) having contactless capability. Openings (MO) for transponder chip modules (TCM) may have various non-rectangular shapes. Slits in the coupling frames may have various shapes, and may extend from anywhere in the opening to anywhere on the periphery (outer edge) of the coupling frame. The slit may be filled. A slit area of the coupling frame may be reinforced. The coupling frame may be one or more metal layers in the card. The slits of two coupling frames may have different shapes than one another. The coupling frame may constitute the entire card body. The coupling frame may be smaller than the overall card body.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: January 10, 2023
    Assignee: AMATECH GROUP LIMIIED
    Inventor: Mustafa Lotya
  • Patent number: 11514288
    Abstract: A metal smartcard (SC) having a transponder chip module (TCM) with a module antenna (MA), and a card body (CB) comprising two discontinuous metal layers (ML), each layer having a slit (S) overlapping the module antenna, the slits being oriented differently than one another. One metal layer can be a front card body (FCB, CF1), and the other layer may be a rear card body (RCB, CF2) having a magnetic stripe (MS) and a signature panel (SP). The slits in the metal layers may have non-linear shapes.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: November 29, 2022
    Assignee: AmaTech Group Limited
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11481596
    Abstract: Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
    Type: Grant
    Filed: August 29, 2020
    Date of Patent: October 25, 2022
    Assignee: AmaTech Group Limited
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11410010
    Abstract: A wireless connection is established between at least two electronic modules (M1, M2) disposed separate from one another in a smartcard having a coupling frame so that the two modules may communicate (signals, data) with each other. The two modules may each have module antennas (MA-1, MA-2), and may be disposed in respective two openings (MO-1, MO-2) of a coupling frame (CF). A coupling antenna (CPA) having two coupler coils (CC-1, CC-2) disposed close to the two modules antennas of the two modules. The coupling antenna may have only the two coupler coils (CC-1, CC-2), connected with one another, without the peripheral card antenna (CA) component of a conventional booster antenna (BA). Energy harvesting is disclosed.
    Type: Grant
    Filed: May 3, 2020
    Date of Patent: August 9, 2022
    Assignee: AMATECH GROUP LIMIIED
    Inventors: Mustafa Lotya, David Finn
  • Publication number: 20220237423
    Abstract: Smartcard (SC) having a metal card body (MCB) which is a coupling frame (CP) with a slit (S), and a coupling loop antenna/structure (CLA, CLS) connected to termination points (TP) on each side of the slit (S) and coupled with the module antenna (MA) of a transponder chip module (TCM). A portion of the card body (CB) may be metal and another, coplanar portion of the card body may be a synthetic material which may be transparent or translucent. Currents may be collected from the interface between the two portions. The card body (CB) may have two metal layers of different materials, adhesively joined to each other using a thermosetting epoxy that converts from B-stage to C-stage during lamination.
    Type: Application
    Filed: December 7, 2021
    Publication date: July 28, 2022
    Inventor: Mustafa Lotya
  • Patent number: 11392817
    Abstract: Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
    Type: Grant
    Filed: August 29, 2020
    Date of Patent: July 19, 2022
    Assignee: AMATECH GROUP LIMITED
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11386317
    Abstract: A capacitive coupling enhanced (CCE) transponder chip module (TCM) comprises an RFID chip (CM, IC), optionally contact pads (CP), a module antenna (MA), and a coupling frame (CF), all on a common substrate or module tape (MT). The coupling frame (CF, 320A) may be in the form of a ring, having an inner edge (IE), an outer edge IE, 324) and a central opening (OP), disposed closely adjacent to and surrounding the module antenna (MA). A slit (S) may extend from the inner edge (IE) to the outer edge (OE) of the coupling frame (CF) so that the coupling frame (CF) is “open loop”. An RFID device may comprise a transponder chip module (TCM) having a module antenna (MA), a device substrate (DS), and an antenna structure (AS) disposed on the device substrate (DS) and connected with the module antenna (MA). A portion of a conductive layer (CL, 904) remaining after etching a module antenna (MA) may be segmented to have several smaller isolated conductive structures.
    Type: Grant
    Filed: August 29, 2020
    Date of Patent: July 12, 2022
    Assignee: AMATECH GROUP LIMITED
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 11354558
    Abstract: A smartcard (SC) having at least a contactless interface, such as having a dual interface transponder chip module (TCM) with a chip (IC), a module antenna (MA) for the contactless interface, and contact pads (CP) for a contact interface. Metal layers (ML) may have openings (MO) for receiving the module, and slits (S) or nonconductive stripes (NCS) extending to the openings, thereby forming coupling frames (CF). A card body (CB) for the smartcard may comprise two such metal layers (front and rear coupling frames) separated by a layer of non-conductive (dielectric) material. A front face card layer and a rear face card layer may complete a multiple coupling frame stack-up for a smartcard. Various slit designs (configurations, geometries) are described and illustrated. The slit may be filled. The slit may be reinforced.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: June 7, 2022
    Assignee: AmaTech Group Limited
    Inventors: Mustafa Lotya, Darren Molloy, David Finn
  • Patent number: 11354560
    Abstract: RFID devices comprising (i) a transponder chip module (TCM, 1410) having an RFIC chip (IC) and a module antenna (MA), and (ii) a coupling frame (CF) having an electrical discontinuity comprising a slit (S) or non-conductive stripe (NCS). The coupling frame may be disposed closely adjacent the transponder chip module so that the slit overlaps the module antenna. The RFID device may be a payment object such as a jewelry item having a metal component modified with a slit (S) to function as a coupling frame. The coupling frame may be moved (such as rotated) to position the slit to selectively overlap the module antennas (MA) of one or more transponder chip modules (TCM-1, TCM-2) disposed in the payment object, thereby selectively enhancing (including enabling) contactless communication between a given transponder chip module in the payment object and another RFID device such as an external contactless reader. The coupling frame may be tubular. A card body construction for a metal smart card is disclosed.
    Type: Grant
    Filed: August 29, 2020
    Date of Patent: June 7, 2022
    Assignee: AmaTech Group Limited
    Inventors: Mustafa Lotya, David Finn, Darren Molloy