Patents by Inventor Mustafa Lotya

Mustafa Lotya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150269472
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150269474
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150269471
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Patent number: 9112272
    Abstract: Winding a module antenna (MA) for an antenna module (AM) on a tubular support structure (SS) having have a lid structure (LD) or a planar tool (PT) disposed at its free end to constrain the windings. Alternatively, winding wire coils for module antennas (MA) on coil winding forms (CWF, FIG. 26) and transferring them to a module tape (MT). Double-sided and single-sided module tapes (MT) having vias and openings (h) are disclosed. Connection bridges (CBR) formed within, between or surrounding the contact pads (CP) are disclosed. Various configurations for components (CA, CC, EA) of booster antenna (BA) are disclosed. A coupler coil (CC) has an inner winding (iw) and an outer winding (ow). Techniques for embedding wire and for bonding wire are disclosed.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: August 18, 2015
    Assignee: Feinics Amatech Teoranta
    Inventors: David Finn, Jan Thomas Czornack, Mustafa Lotya, Theodor Fendt, Klaus Ummenhofer
  • Publication number: 20150136858
    Abstract: A capacitive coupling enhanced (CCE) transponder chip module (TCM) comprises an RFID chip (CM, IC), optionally contact pads (CP), a module antenna (MA), and a coupling frame (CF), all on a common substrate or module tape (MT). The coupling frame (CF, 320A) may be in the form of a ring, having an inner edge (IE), an outer edge IE, 324) and a central opening (OP), disposed closely adjacent to and surrounding the module antenna (MA). A slit (S) may extend from the inner edge (IE) to the outer edge (OE) of the coupling frame (CF) so that the coupling frame (CF) is “open loop”. An RFID device may comprise a transponder chip module (TCM) having a module antenna (MA), a device substrate (DS), and an antenna structure (AS) disposed on the device substrate (DS) and connected with the module antenna (MA). A portion of a conductive layer (CL, 904) remaining after etching a module antenna (MA) may be segmented to have several smaller isolated conductive structures.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 21, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Patent number: 9033250
    Abstract: A booster antenna (BA) for a smart card comprises a card antenna (CA) component extending around a periphery of a card body (CB), a coupler coil (CC) component at a location for an antenna module (AM), and an extension antenna (EA) contributing to the inductance of the booster antenna (BA). A method of wire embedding is also disclosed, by controlling a force and ultrasonic power applied by an embedding tool at different positions on the card body (CB).
    Type: Grant
    Filed: September 8, 2013
    Date of Patent: May 19, 2015
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Patrick Gerard Conneely, Jan Thomas Czornack, Klaus Ummenhofer, Mustafa Lotya
  • Publication number: 20150129665
    Abstract: Connection bridges (CBR) for dual-interface transponder chip modules (TCM) 200 may have an area which is substantially equal to or greater than an area of a contact pad (CP) of a contact pad array (CPA). A given connection bridge may be L-shaped and may comprise (i) a first portion disposed external to the contact pad array and extending parallel to the insertion direction, and (ii) a second portion extending from an end of the first portion perpendicular to the insertion direction to within the contact pad array (CPA) such as between C1 and C5. The connection bridge may extend around a corner of the contact pad array, may be large enough to accommodate wire bonding, and may be integral with a coupling frame (CF) extending around the contact pad array. The transponder chip modules may be integrated into a smart card (SC).
    Type: Application
    Filed: October 27, 2014
    Publication date: May 14, 2015
    Inventors: David Finn, Mustafa Lotya
  • Publication number: 20150021403
    Abstract: A conductive coupling frame (CF) having two ends, forming an open loop having two ends or a discontinuous metal layer disposed surrounding and closely adjacent a transponder chip module (TCM, 610), and substantially coplanar with an antenna structure (AS, CES, LES) in the transponder chip module (TCM). A metal card body (MCB, CB) or a transaction card with a discontinuous metal layer having a slit (S) or a non-conductive strip (NCS, 1034) extending from a module opening (MO) to a periphery of the card body to function as a coupling frame (CF). The coupling frame (CF) may be thick enough to be non-transparent to RF at frequencies of interest. A switch (SW) may be provided to connect ends of the coupling frame (CF) across the slit (S, 630). A reinforcing structure (RS) may be provided to stabilize the coupling frame (CF) and card body (CB).
    Type: Application
    Filed: September 22, 2014
    Publication date: January 22, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150021402
    Abstract: A booster antenna (BA) for a smart card comprises a card antenna (CA) component extending around a periphery of a card body (CB), a coupler coil (CC) component at a location for an antenna module (AM), and an extension antenna (EA) contributing to the inductance of the booster antenna (BA). A method of wire embedding is also disclosed, by controlling a force and ultrasonic power applied by an embedding tool at different positions on the card body (CB).
    Type: Application
    Filed: February 6, 2014
    Publication date: January 22, 2015
    Inventors: David Finn, Mustafa Lotya, Klaus Ummenhofer
  • Publication number: 20140361086
    Abstract: A conductive coupling frame (CF) having two ends, forming an open loop, disposed surrounding and closely adjacent a transponder chip module (TCM), and substantially coplanar with an antenna structure (AS, LES) in the transponder chip module (TCM). A metal card body (MCB) having a slit (S) extending from a module opening (MO) to a periphery of the card body to function as a coupling frame (CF). The coupling frame (CF) may be thick enough to be non-transparent to RF at frequencies of interest. A switch may be provided to connect ends of the coupling frame (CF) across the slit (S). The transponder chip module (TCM) may comprise a laser-etched antenna structure (LES) and a non-perforated contact pad (CP) arrangement.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20140284386
    Abstract: Laser etching antenna structures (AS) for RFID antenna modules (AM). Combining laser etching and chemical etching. Limiting the thickness of the contact pads (CP) to less than the skin depth (18 m) of the conductive material (copper) used for the contact pads (CP). Multiple antenna structures (AS1, AS2) in an antenna module (AM). Incorporating LEDs into the antenna module (AM) or smartcard (SC).
    Type: Application
    Filed: May 19, 2014
    Publication date: September 25, 2014
    Inventors: David Finn, Mustafa Lotya
  • Publication number: 20140209691
    Abstract: Selective deposition of magnetic material such as particles, and producing a pre-laminated stack of shielding layers for offsetting attenuation of RF caused by a metal face plate of a smart card (or tag) or a metallized layer near a passive transponder. Coated or uncoated magnetic particles of different sizes may be used to increase the packing density of the material after its deposition on a substrate. Magnetography-based techniques may be used to apply the particles, at high packing density, including different-sized particles to a substrate such as PVC. Magnetic particles may be used as a carrier medium to deposit other particles nanoparticles. A system for selective deposition is disclosed.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 31, 2014
    Inventors: David Finn, Mustafa Lotya
  • Publication number: 20140104133
    Abstract: Winding a module antenna (MA) for an antenna module (AM) on a tubular support structure (SS) having have a lid structure (LD) or a planar tool (PT) disposed at its free end to constrain the windings. Alternatively, winding wire coils for module antennas (MA) on coil winding forms (CWF, FIG. 26) and transferring them to a module tape (MT). Double-sided and single-sided module tapes (MT) having vias and openings (h) are disclosed. Connection bridges (CBR) formed within, between or surrounding the contact pads (CP) are disclosed. Various configurations for components (CA, CC, EA) of booster antenna (BA) are disclosed. A coupler coil (CC) has an inner winding (iw) and an outer winding (ow). Techniques for embedding wire and for bonding wire are disclosed.
    Type: Application
    Filed: November 13, 2013
    Publication date: April 17, 2014
    Inventors: David Finn, Jan Thomas Czornack, Mustafa Lotya, Theodor Fendt, Klaus Ummenhofer
  • Publication number: 20140091149
    Abstract: A booster antenna (BA) for a smart card comprises a card antenna (CA) component extending around a periphery of a card body (CB), a coupler coil (CC) component at a location for an antenna module (AM), and an extension antenna (EA) contributing to the inductance of the booster antenna (BA). A method of wire embedding is also disclosed, by controlling a force and ultrasonic power applied by an embedding tool at different positions on the card body (CB).
    Type: Application
    Filed: September 8, 2013
    Publication date: April 3, 2014
    Inventors: David Finn, Patrick Gerard Conneely, Jan Thomas Czornack, Klaus Ummenhofer, Mustafa Lotya
  • Publication number: 20130302593
    Abstract: The invention provides a process for exfoliating a 3-dimensional layered material to produce a 2-dimensional material, said process comprising the steps of mixing the layered material in a water-surfactant solution to provide a mixture wherein the material and atomic structural properties of the layered material in the mixture are not altered; applying energy, for example ultrasound, to said mixture; and applying a force, for example centrifugal force, to said mixture. The invention provides a fast, simple and high yielding process for separating 3-dimensional layered materials into individual 2-dimensional layers or flakes, which do not re-aggregate, without utilising hazardous solvents.
    Type: Application
    Filed: September 2, 2011
    Publication date: November 14, 2013
    Applicant: The Provost, Fellows, Foudation Scholars, and the Other Members of Board of the College of the Holy
    Inventors: Jonathan Coleman, Ronan Smith, Mustafa Lotya