Patents by Inventor Mustafa Lotya

Mustafa Lotya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200250506
    Abstract: Smartcards having (i) a metal card body (MCB) with a slit (S) overlapping a module antenna (MA) of a chip module (TCM) or (ii) multiple metal layers (M1, M2, M3) each having a slit (S1, S2, S3) offset from or oriented differently than each other. A front metal layer may be continuous (no slit), and may be shielded from underlying metal layers by a shielding layer (SL). Metal backing inserts (MBI) reinforcing the slit(s) may also have a slit (S2) overlapping the module antenna. Diamond like carbon coating filling the slit. Key fobs similarly fabricated. Smart cards with metal card bodies (MCB). Plastic-Metal-Plastic smartcards and methods of manufacture are disclosed. Such cards may be contactless only, contact only, or may be dual-interface (contact and contactless) cards.
    Type: Application
    Filed: March 23, 2020
    Publication date: August 6, 2020
    Inventors: Mustafa Lotya, David Finn, Darren Molloy
  • Patent number: 10733494
    Abstract: A metal smartcard (SC) having a transponder chip module (TCM) with a module antenna (MA), and a card body (CB) comprising two discontinuous metal layers (ML), each layer having a slit (S) overlapping the module antenna, the slits being oriented differently than one another. One metal layer can be a front card body (FCB, CF1), and the other layer may be a rear card body (RCB, CF2) having a magnetic stripe (MS) and a signature panel (SP).
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 4, 2020
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20200226443
    Abstract: A wireless connection may be established between at least two electronic modules (M1, M2) disposed in module openings (MO-1, MO-2) of a smartcard so that the two modules may communicate (signals, data) with each other. The connection may be implemented by a booster antenna (BA) having two coupler coils (CC-1, CC-2) disposed in close proximity with the two modules, and connected with one another. The booster antenna may also harvest energy from an external device such as a card reader, POS terminal, or a smartphone, and provide the energy to the two modules via the two coupler coils.
    Type: Application
    Filed: February 23, 2020
    Publication date: July 16, 2020
    Inventors: Mustafa Lotya, David Finn
  • Publication number: 20200151534
    Abstract: Metal layers of a smartcard may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Pre-laminated metal layers having an array of card sites, with each position having a defined area prepared for the later implanting of a transponder chip module characterized by different sized perforations and gaps around this defined area adjacent to the RFID slit(s), to facilitate the quick removal of the metal in creating a pocket to accept a transponder chip module.
    Type: Application
    Filed: December 30, 2019
    Publication date: May 14, 2020
    Inventors: Mustafa Lotya, Darren Molloy, David Finn
  • Patent number: 10599972
    Abstract: Smartcards having (i) a metal card body (MCB) with a slit (S) overlapping a module antenna (MA) of a chip module (TCM) or (ii) multiple metal layers (M1, M2, M3) each having a slit (S1, S2, S3) offset from or oriented differently than each other. A front metal layer may be continuous (no slit), and may be shielded from underlying metal layers by a shielding layer (SL). Metal backing inserts (MBI) reinforcing the slit(s) may also have a slit (S2) overlapping the module antenna. Diamond like carbon coating filling the slit. Key fobs similarly fabricated. Smart cards with metal card bodies (MCB). Plastic-Metal-Plastic smartcards and methods of manufacture are disclosed. Such cards may be contactless only, contact only, or may be dual-interface (contact and contactless) cards.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: March 24, 2020
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20200050914
    Abstract: Connection bridges (CBR) for dual-interface transponder chip modules (TCM) 200 may have an area which is substantially equal to or greater than an area of a contact pad (CP) of a contact pad array (CPA). A given connection bridge may be L-shaped and may comprise (i) a first portion disposed external to the contact pad array and extending parallel to the insertion direction, and (ii) a second portion extending from an end of the first portion perpendicular to the insertion direction to within the contact pad array (CPA) such as between C1 and C5. The connection bridge may extend around a corner of the contact pad array, may be large enough to accommodate wire bonding, and may be integral with a coupling frame (CF) extending around the contact pad array. The transponder chip modules may be integrated into a smart card (SC).
    Type: Application
    Filed: February 5, 2019
    Publication date: February 13, 2020
    Inventors: David Finn, Mustafa Lotya
  • Patent number: 10552722
    Abstract: Smartcard (SC) having a card body (CB) and a conductive coupling frame antenna (CFA) extending as a closed loop circuit around a periphery of the card body, and also extending inwardly so that two portions of the coupling frame antenna are closely adjacent each other, with a gap therebetween. The gap may extend from a periphery of the card body to a position corresponding with a module antenna (MA) of a transponder chip module (TCM) disposed in the card body, and may function like a slit (S) in a coupling frame (CF). A portion of the coupling frame antenna may be arranged to surround the ISO position of the transponder chip module in the card body. A coupling frame antenna (CFA) may be incorporated onto a module tape (MT) for a transponder chip module (TCM).
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: February 4, 2020
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20200034578
    Abstract: According to the invention, generally, a wireless connection may be established between two electronic modules (M1, M2) disposed in module openings (MO-1, MO-2) of a smartcard so that the two modules may communicate (signals, data) with each other. The connection may be implemented by a booster antenna (BA) having two coupler coils (CC-1, CC-2) disposed close to the two modules, and connected with one another. The booster antenna may also harvest energy from an external device such as a card reader, POS terminal, or a smartphone. A coupling antenna (CPA) may have only the two coupler coils connected with one another, without the peripheral card antenna (CA) component of a conventional booster antenna. A module may be disposed in only one of the two module openings.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 30, 2020
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20200005114
    Abstract: A dual-interface metal hybrid smartcard comprising a plastic card body (CB), a booster antenna (BA) and a metal frame (CMF, DMF) disposed in the card body, in the form of a rectangular metal frame disposed external to the booster antenna (BA). The metal frame may extend continuously around the periphery of the card body as a continuous metal frame (CMF), or may have a slit (S), thereby forming a discontinuous metal frame (DMF). A second metal slug (MS-2) may be disposed at a lower portion of the card body (CB), inside the booster antenna. A smartcard may comprise a plastic card body (CB) and a generally rectangular metal slug (MS) having a main body portion slightly smaller than the card body, and having at least one protrusion extending from corresponding at least one corner of the main body portion of the metal slug to corresponding at least one corner of the card body.
    Type: Application
    Filed: January 29, 2019
    Publication date: January 2, 2020
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Patent number: 10518518
    Abstract: Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: December 31, 2019
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20190392283
    Abstract: A planar antenna (PA) of a transponder chip module (TCM) may have a planar antenna (PA) etched from a foil to have a track width of approximately 100 ?m or less; and a spacing between adjacent turns of the track of approximately 25 ?m or less. The track may subsequently be plated to reduce the spacing. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA).
    Type: Application
    Filed: January 14, 2019
    Publication date: December 26, 2019
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20190197386
    Abstract: A smartcard (SC) having at least a contactless interface, such as having a dual interface transponder chip module (TCM) with a chip (IC), a module antenna (MA) for the contactless interface, and contact pads (CP) for a contact interface. Metal layers (ML) may have openings (MO) for receiving the module, and slits (S) or nonconductive stripes (NCS) extending to the openings, thereby forming coupling frames (CF). A card body (CB) for the smartcard may comprise two such metal layers (front and rear coupling frames) separated by a layer of non-conductive (dielectric) material. A front face card layer and a rear face card layer may complete a multiple coupling frame stack-up for a smartcard.
    Type: Application
    Filed: January 13, 2019
    Publication date: June 27, 2019
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20190156073
    Abstract: Smartcards having (i) a metal card body (MCB) with a slit (S) overlapping a module antenna (MA) of a chip module (TCM) or (ii) multiple metal layers (M1, M2, M3) each having a slit (S1, S2, S3) offset or oriented differently than each other. A front metal layer may be continuous (no slit), and may be shielded from underlying metal layers by a shielding layer (SL). Metal backing inserts (MBI) reinforcing the slit(s) may also have a slit (S2) overlapping the module antenna. Diamond like coating filling the slit. Key fobs similarly fabricated. Plastic-Metal-Plastic smart cards and methods of manufacture are disclosed. Such cards may be contactless only, contact only, or may be dual-interface (contact and contactless) cards.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20190114526
    Abstract: Smartcards having (i) a metal card body (MCB) with a slit (S) overlapping a module antenna (MA) of a chip module (TCM) or (ii) multiple metal layers (M1, M2, M3) each having a slit (S1, S2, S3) offset from or oriented differently than each other. A front metal layer may be continuous (no slit), and may be shielded from underlying metal layers by a shielding layer (SL). Metal backing inserts (MBI) reinforcing the slit(s) may also have a slit (S2) overlapping the module antenna. Diamond like carbon coating filling the slit. Key fobs similarly fabricated. Smart cards with metal card bodies (MCB). Plastic-Metal-Plastic smartcards and methods of manufacture are disclosed. Such cards may be contactless only, contact only, or may be dual-interface (contact and contactless) cards.
    Type: Application
    Filed: November 26, 2018
    Publication date: April 18, 2019
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Patent number: 10248902
    Abstract: A transponder chip module (TCM) comprises an RFID chip (CM, IC), optionally contact pads (CP), a module antenna (MA), and a coupling frame (CF), all on a common substrate or module tape (MT). The coupling frame (CF) may be in the form of a conductive layer having an outer edge (OE) and a slit (S) or non-conductive stripe (NCS) extending from the outer edge to an inner position thereof which may be a central opening (OP). The coupling frame (CF) may be arranged so that the slit (S) or non-conductive strips (NCS) overlaps at least a portion of the module antenna (MA). A suppressor diode or capacitor may be connected across the slit (S). Methods and apparatus are disclosed.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 2, 2019
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Patent number: 10193211
    Abstract: Coupling frames comprising a conductive (metal) surface with a slit (S) or non-conductive stripe (NCS) extending from an outer edge to an inner position thereof, and overlapping a transponder device. A coupling frame with slit for coupling with an inductive or capacitive device (inductor or capacitor) may be used at any ISM frequency band to concentrate surface current around the slit. The coupling frame can be tuned to operate at a frequency of interested by introducing a resistive, inductive or capacitive element. The resonance frequency of the coupling frame can be matched to that of the transponder chip module to achieve optimum performance. Coupling frames with or without a transponder device may be integrated, overlapping, stacked or placed adjacent to one another to enhance system performance. Multiple coupling frames may be electrically isolated from one another by the application of a dielectric coating such Diamond Like Carbon (DLC).
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: January 29, 2019
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20180341847
    Abstract: Smartcard (SC) having a card body (CB) and a conductive coupling frame antenna (CFA) extending as a closed loop circuit around a periphery of the card body, and also extending inwardly so that two portions of the coupling frame antenna are closely adjacent each other, with a gap therebetween. The gap may extend from a periphery of the card body to a position corresponding with a module antenna (MA) of a transponder chip module (TCM) disposed in the card body, and may function like a slit (S) in a coupling frame (CF). A portion of the coupling frame antenna may be arranged to surround the ISO position of the transponder chip module in the card body. A coupling frame antenna (CFA) may be incorporated onto a module tape (MT) for a transponder chip module (TCM).
    Type: Application
    Filed: March 29, 2018
    Publication date: November 29, 2018
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20180339503
    Abstract: Smartcards with metal layers manufactured according to various techniques disclosed herein. One or more metal layers of a smartcard stackup may be provided with slits overlapping at least a portion of a module antenna in an associated transponder chip module disposed in the smartcard so that the metal layer functions as a coupling frame. One or more metal layers may be pre-laminated with plastic layers to form a metal core or clad subassembly for a smartcard, and outer printed and/or overlay plastic layers may be laminated to the front and/or back of the metal core. Front and back overlays may be provided. Various constructions of and manufacturing techniques (including temperature, time, and pressure regimes for laminating) for smartcards are disclosed herein.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 29, 2018
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20180341846
    Abstract: A metal smartcard (SC) having a transponder chip module (TCM) with a module antenna (MA), and a card body (CB) comprising two discontinuous metal layers (ML), each layer having a slit (S) overlapping the module antenna, the slits being oriented differently than one another. One metal layer can be a front card body (FCB, CF1), and the other layer may be a rear card body (RCB, CF2) having a magnetic stripe (MS) and a signature panel (SP).
    Type: Application
    Filed: March 29, 2018
    Publication date: November 29, 2018
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20180123221
    Abstract: Coupling frames comprising a conductive (metal) surface with a slit (S) or non-conductive stripe (NCS) extending from an outer edge to an inner position thereof, and overlapping a transponder device. A coupling frame with slit for coupling with an inductive or capacitive device (inductor or capacitor) may be used at any ISM frequency band to concentrate surface current around the slit. The coupling frame can be tuned to operate at a frequency of interested by introducing a resistive, inductive or capacitive element. The resonance frequency of the coupling frame can be matched to that of the transponder chip module to achieve optimum performance. Coupling frames with or without a transponder device may be integrated, overlapping, stacked or placed adjacent to one another to enhance system performance. Multiple coupling frames may be electrically isolated from one another by the application of a dielectric coating such Diamond Like Carbon (DLC).
    Type: Application
    Filed: July 28, 2017
    Publication date: May 3, 2018
    Inventors: David Finn, Mustafa Lotya, Darren Molloy