Patents by Inventor Myung-Hee Na

Myung-Hee Na has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8106455
    Abstract: Multiple types of gate stacks are formed on a doped semiconductor well. A high dielectric constant (high-k) gate dielectric is formed on the doped semiconductor well. A metal gate layer is formed in one device area, while the high-k gate dielectric is exposed in other device areas. Threshold voltage adjustment oxide layers having different thicknesses are formed in the other device areas. A conductive gate material layer is then formed over the threshold voltage adjustment oxide layers. One type of field effect transistors includes a gate dielectric including a high-k gate dielectric portion. Other types of field effect transistors include a gate dielectric including a high-k gate dielectric portion and a first threshold voltage adjustment oxide portions having different thicknesses. Field effect transistors having different threshold voltages are provided by employing different gate dielectric stacks and doped semiconductor wells having the same dopant concentration.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Michael P. Chudzik, Shu-Jen Han, William K. Henson, Yue Liang, Edward P. Maciejewski, Myung-Hee Na, Edward J. Nowak, Xiaojun Yu
  • Patent number: 8032349
    Abstract: Disclosed herein are embodiments of an automated, fast and efficient method of generating a customized compact model that represents a semiconductor device at the chip, wafer or multi-wafer level in a specific manufacturing environment. Specifically, measurement data is collected from a specific manufacturing environment and sorted by channel lengths. Then, an optimizer is used to generate customized modeling parameters based on the measurement data. The optimization processes is a multi-step process. First, a first set of modeling parameters is generated based on measurement data associated with a long channel length. Second, a second set of modeling parameters is generated based on the first set and on measurement data associated with a short channel length. Finally, the customized modeling parameters are generated based on both the first set and the second set. The customized modeling parameters are used to generate a customized compact device model representative of the specific manufacturing environment.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Sim Y. Loo, Steven G. Lovejoy, Myung-Hee Na, Edward J. Nowak, Scott K. Springer
  • Publication number: 20100276753
    Abstract: Multiple types of gate stacks are formed on a doped semiconductor well. A high dielectric constant (high-k) gate dielectric is formed on the doped semiconductor well. A metal gate layer is formed in one device area, while the high-k gate dielectric is exposed in other device areas. Threshold voltage adjustment oxide layers having different thicknesses are formed in the other device areas. A conductive gate material layer is then formed over the threshold voltage adjustment oxide layers. One type of field effect transistors includes a gate dielectric including a high-k gate dielectric portion. Other types of field effect transistors include a gate dielectric including a high-k gate dielectric portion and a first threshold voltage adjustment oxide portions having different thicknesses. Field effect transistors having different threshold voltages are provided by employing different gate dielectric stacks and doped semiconductor wells having the same dopant concentration.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: Brian J. Greene, Michael P. Chudzik, Shu-Jen Han, William K. Henson, Yue Liang, Edward P. Maciejewski, Myung-Hee Na, Edward J. Nowak, Xiaojun Yu
  • Patent number: 7795098
    Abstract: An apparatus and method for manufacturing rotated field effect transistors. The method comprises providing a substrate including a first gate structure and a second gate structure, which are not parallel to each other. The method further includes performing a first ion implant substantially orthogonal to an edge of the first gate structure to form a first impurity region and performing a second ion implant at a direction different than that of the first ion implant and substantially orthogonal to an edge of the second gate structure to form a second impurity region under the edge of the second gate structure.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Myung-hee Na, Edward J. Nowak
  • Publication number: 20080183442
    Abstract: Disclosed herein are embodiments of an automated, fast and efficient method of generating a customized compact model that represents a semiconductor device at the chip, wafer or multi-wafer level in a specific manufacturing environment. Specifically, measurement data is collected from a specific manufacturing environment and sorted by channel lengths. Then, an optimizer is used to generate customized modeling parameters based on the measurement data. The optimization processes is a multi-step process. First, a first set of modeling parameters is generated based on measurement data associated with a long channel length. Second, a second set of modeling parameters is generated based on the first set and on measurement data associated with a short channel length. Finally, the customized modeling parameters are generated based on both the first set and the second set. The customized modeling parameters are used to generate a customized compact device model representative of the specific manufacturing environment.
    Type: Application
    Filed: January 25, 2007
    Publication date: July 31, 2008
    Inventors: Sim Y. Loo, Steven G. Lovejoy, Myung-Hee Na, Edward J. Nowak, Scott K. Springer
  • Patent number: 7335563
    Abstract: An apparatus and method for manufacturing rotated field effect transistors. The method comprises providing a substrate including a first gate structure and a second gate structure, which are not parallel to each other. The method further includes performing a first ion implant substantially orthogonal to an edge of the first gate structure to form a first impurity region and performing a second ion implant at a direction different than that of the first ion implant and substantially orthogonal to an edge of the second gate structure to form a second impurity region under the edge of the second gate structure.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: February 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Myung-hee Na, Edward J. Nowak
  • Publication number: 20070105326
    Abstract: An apparatus and method for manufacturing rotated field effect transistors. The method comprises providing a substrate including a first gate structure and a second gate structure, which are not parallel to each other. The method further includes performing a first ion implant substantially orthogonal to an edge of the first gate structure to form a first impurity region and performing a second ion implant at a direction different than that of the first ion implant and substantially orthogonal to an edge of the second gate structure to form a second impurity region under the edge of the second gate structure.
    Type: Application
    Filed: November 9, 2005
    Publication date: May 10, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent Anderson, Andres Bryant, Myung-hee Na, Edward Nowak
  • Publication number: 20070048925
    Abstract: An apparatus and method for reducing resistance under a body contact region. The method comprises providing a substrate including a gate structure comprising an active region and a contact body region. The method also includes forming a first impurity region under the contact body region at a higher dose than that under the active region. The resulting higher concentration is configured to lower a resistance in a body-contact parasitic region of the isolating channel region and suppresses a back-gate “sneak path’” for leakage.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 1, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin McStay, Myung-Hee Na, Edward Nowak
  • Patent number: 7011980
    Abstract: A structure and method for measuring leakage current. The structure includes: a body formed in a semiconductor substrate; a dielectric layer on a top surface of the silicon body; and a conductive layer on a top surface of the dielectric layer, a first region of the dielectric layer having a first thickness and a second region of the dielectric layer between the conductive layer and the top surface of the body having a second thickness, the second thickness different from the first thickness. The method includes, providing two of the above structures having different areas of first and the same area of second or having different areas of second and the same area of first dielectric regions, measuring a current between the conductive layer and the body for each structure and calculating a gate tunneling leakage current based on the current measurements and dielectric layer areas of the two devices.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: March 14, 2006
    Assignee: International Business Machines Corporation
    Inventors: Myung-Hee Na, Edward J. Nowak