Patents by Inventor Nan Tu

Nan Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10164141
    Abstract: A semiconductor device includes a carrier wafer, a device layer, a first semiconductor layer and a second semiconductor layer. The device layer is disposed on the carrier wafer. The first semiconductor layer is disposed on the device layer, and has a first side face and a second side face opposite to the first side face, in which the first side face is adjacent to the device layer. The second semiconductor layer is disposed on the first semiconductor layer, and has a third side face and a fourth side face opposite to the third side face, in which the fourth side face of the second semiconductor layer is adjacent to the second side face of the first semiconductor layer, and the second semiconductor layer is implanted and annealed.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: December 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Hsing-Chih Lin, Chien-Chang Huang
  • Patent number: 10157946
    Abstract: A semiconductor device is operated for sensing incident light and includes a substrate, a device layer, a semiconductor layer and a color filter layer. The device layer is disposed on the substrate and includes light-sensing regions. The semiconductor layer overlies the device layer and has a first surface and a second surface opposite to the first surface. The first surface is adjacent to the device layer. The semiconductor layer includes microstructures on the second surface. The color filter layer is disposed on the second surface of the semiconductor layer.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Hsing-Chih Lin, Chien-Chang Huang, Shih-Shiung Chen
  • Patent number: 10153319
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an image sensor integrated chip. The method may be performed by forming an image sensing element within a substrate, and forming an absorption enhancement structure over a back-side of the substrate. The absorption enhancement structure is selectively etched to concurrently define a plurality of grid structure openings and a ground structure opening within the absorption enhancement structure. A grid structure is formed within the plurality of grid structure openings and a ground structure is formed within the ground structure opening. The grid structure extends from over the absorption enhancement structure to a location within the absorption enhancement structure.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: December 11, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Yuan Wen, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh
  • Publication number: 20180350853
    Abstract: An image sensor with high quantum efficiency is provided. In some embodiments, a semiconductor substrate includes a non-porous semiconductor layer along a front side of the semiconductor substrate. A periodic structure is along a back side of the semiconductor substrate. A high absorption layer lines the periodic structure on the back side of the semiconductor substrate. The high absorption layer is a semiconductor material with an energy bandgap less than that of the non-porous semiconductor layer. A photodetector is in the semiconductor substrate and the high absorption layer. A method for manufacturing the image sensor is also provided.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 6, 2018
    Inventors: Chien-Chang Huang, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh, Ji Heng Jiang
  • Publication number: 20180240838
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an image sensor integrated chip. The method may be performed by forming an image sensing element within a substrate, and forming an absorption enhancement structure over a back-side of the substrate. The absorption enhancement structure is selectively etched to concurrently define a plurality of grid structure openings and a ground structure opening within the absorption enhancement structure. A grid structure is formed within the plurality of grid structure openings and a ground structure is formed within the ground structure opening. The grid structure extends from over the absorption enhancement structure to a location within the absorption enhancement structure.
    Type: Application
    Filed: April 24, 2018
    Publication date: August 23, 2018
    Inventors: Chi-Yuan Wen, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh
  • Patent number: 10056427
    Abstract: An FSI image sensor device structure is provided. The FSI image sensor device structure includes a substrate and a barrier structure formed in the substrate. The barrier structure includes a plurality of protrusion portions and a plurality of pillar portions. Each of the protrusion portions has a first height, and each of the pillar portions has a second height that is greater than the first height. The FSI image sensor device structure includes a pixel region formed over the protrusion portions and a storage region formed over the protrusion portions, wherein the pillar portions surround the pixel region.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 21, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ji-Heng Jiang, Ming-Chi Wu, Chi-Yuan Wen, Chien-Nan Tu, Yu-Lung Yeh
  • Publication number: 20180151759
    Abstract: The present disclosure relates to an integrated chip that has a light sensing element arranged within a substrate. An absorption enhancement structure is arranged along a back-side of the substrate, and an interconnect structure is arranged along a front-side of the substrate. A reflection structure includes a dielectric structure and a plurality of semiconductor pillars that matingly engage the dielectric structure. The dielectric structure and semiconductor pillars are arranged along the front-side of the substrate and are spaced between the light sensing element and the interconnect structure. The plurality of semiconductor pillars and the dielectric structure are collectively configured to reflect incident light that has passed through the absorption enhancement structure and through the light sensing element back towards the light sensing element before the incident light strikes the interconnect structure.
    Type: Application
    Filed: September 27, 2017
    Publication date: May 31, 2018
    Inventors: Po-Han Huang, Chien Nan Tu, Chi-Yuan Wen, Ming-Chi Wu, Yu-Lung Yeh, Hsin-Yi Kuo
  • Publication number: 20180151615
    Abstract: The present disclosure relates to an image sensor integrated chip having a grid structure that reduces crosstalk between pixel regions of an image sensor chip. In some embodiments, the integrated chip has an image sensing element arranged within a substrate. An absorption enhancement structure is disposed along the back-side of the substrate. A grid structure is arranged over the absorption enhancement structure. The grid structure defines an opening arranged over the image sensing element and extends from over the absorption enhancement structure to a location within the absorption enhancement structure. By having the grid structure extend into the absorption enhancement structure, the grid structure is able to reduce crosstalk between adjacent image sensing elements by blocking radiation reflected off of non-planar surfaces of the absorption enhancement structure from traveling to an adjacent pixel region.
    Type: Application
    Filed: March 27, 2017
    Publication date: May 31, 2018
    Inventors: Chi-Yuan Wen, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh
  • Patent number: 9985072
    Abstract: The present disclosure relates to an image sensor integrated chip having a grid structure that reduces crosstalk between pixel regions of an image sensor chip. In some embodiments, the integrated chip has an image sensing element arranged within a substrate. An absorption enhancement structure is disposed along the back-side of the substrate. A grid structure is arranged over the absorption enhancement structure. The grid structure defines an opening arranged over the image sensing element and extends from over the absorption enhancement structure to a location within the absorption enhancement structure. By having the grid structure extend into the absorption enhancement structure, the grid structure is able to reduce crosstalk between adjacent image sensing elements by blocking radiation reflected off of non-planar surfaces of the absorption enhancement structure from traveling to an adjacent pixel region.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: May 29, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Yuan Wen, Chien Nan Tu, Ming-Chi Wu, Yu-Lung Yeh
  • Publication number: 20180053800
    Abstract: A semiconductor device is operated for sensing incident light and includes a substrate, a device layer, a semiconductor layer and a color filter layer. The device layer is disposed on the substrate and includes light-sensing regions. The semiconductor layer overlies the device layer and has a first surface and a second surface opposite to the first surface. The first surface is adjacent to the device layer. The semiconductor layer includes microstructures on the second surface. The color filter layer is disposed on the second surface of the semiconductor layer.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan TU, Yu-Lung YEH, Hsing-Chih LIN, Chien-Chang HUANG, Shih-Shiung CHEN
  • Patent number: 9818779
    Abstract: A semiconductor device is operated for sensing incident light and includes a substrate, a device layer, a semiconductor layer and a color filter layer. The device layer is disposed on the substrate and includes light-sensing regions. The semiconductor layer overlies the device layer and has a first surface and a second surface opposite to the first surface. The first surface is adjacent to the device layer. The semiconductor layer includes microstructures on the second surface. The color filter layer is disposed on the second surface of the semiconductor layer.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: November 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Hsing-Chih Lin, Chien-Chang Huang, Shih-Shiung Chen
  • Patent number: 9721983
    Abstract: A semiconductor device includes a carrier substrate, a first color filter, a first photodetector, and a light enhancement structure. The first photodetector is disposed between the carrier substrate and the first color filter. The light enhancement structure is disposed between the first color filter and the carrier substrate and adjacent to the first photodetector for enhancing intensity of light incident the first photodetector.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: August 1, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Chang Huang, Chien-Nan Tu, Li-Ming Sun, Yu-Lung Yeh, Yi-Ping Pan
  • Patent number: 9620556
    Abstract: A method for forming an image-sensor device is provided. The method includes providing a first semiconductor substrate having a first surface and a second surface opposite to the first surface. The method includes forming a device layer over the first surface of the first semiconductor substrate. The method includes bonding the first semiconductor substrate to a second semiconductor substrate after the formation of the device layer. The second surface faces the second semiconductor substrate. The method includes forming a diffusion layer between the first semiconductor substrate and the second semiconductor substrate. The diffusion layer has a dopant concentration gradient that increases in a direction from the first semiconductor substrate toward the second semiconductor substrate.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Ming-Hsien Wu
  • Patent number: 9620553
    Abstract: A semiconductor device includes a substrate, a semiconductor layer, light-sensing devices, a transparent dielectric layer and a grid shielding layer. The semiconductor layer overlies the substrate, and has a first surface and a second surface opposite to the first surface. The semiconductor layer includes microstructures disposed on the second surface of the semiconductor layer. The light-sensing devices are disposed on the first surface of the semiconductor layer. The transparent dielectric layer is disposed on the second surface of the semiconductor layer, and covers the microstructures. The grid shielding layer extends from the first surface of the semiconductor layer toward the second surface of the semiconductor layer, and surrounds each of the light-sensing devices to separate the light-sensing devices from each other, in which a depth of the grid shielding layer is greater than two-thirds of a thickness of the semiconductor layer.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: April 11, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Chang Huang, Hsing-Chih Lin, Chien-Nan Tu, Yu-Lung Yeh
  • Publication number: 20160336365
    Abstract: A semiconductor device includes a carrier substrate, a first color filter, a first photodetector, and a light enhancement structure. The first photodetector is disposed between the carrier substrate and the first color filter. The light enhancement structure is disposed between the first color filter and the carrier substrate and adjacent to the first photodetector for enhancing intensity of light incident the first photodetector.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Chien-Chang HUANG, Chien-Nan TU, Li-Ming SUN, Yu-Lung YEH, Yi-Ping PAN
  • Publication number: 20160300877
    Abstract: A semiconductor device includes a substrate, a semiconductor layer, light-sensing devices, a transparent dielectric layer and a grid shielding layer. The semiconductor layer overlies the substrate, and has a first surface and a second surface opposite to the first surface. The semiconductor layer includes microstructures disposed on the second surface of the semiconductor layer. The light-sensing devices are disposed on the first surface of the semiconductor layer. The transparent dielectric layer is disposed on the second surface of the semiconductor layer, and covers the microstructures. The grid shielding layer extends from the first surface of the semiconductor layer toward the second surface of the semiconductor layer, and surrounds each of the light-sensing devices to separate the light-sensing devices from each other, in which a depth of the grid shielding layer is greater than two-thirds of a thickness of the semiconductor layer.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 13, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Chang HUANG, Hsing-Chih LIN, Chien-Nan TU, Yu-Lung YEH
  • Patent number: 9397130
    Abstract: A semiconductor device includes a substrate, a semiconductor layer, light-sensing devices, a transparent dielectric layer and a grid shielding layer. The semiconductor layer overlies the substrate, and has a first surface and a second surface opposite to the first surface. The semiconductor layer includes microstructures disposed on the second surface of the semiconductor layer. The light-sensing devices are disposed on the first surface of the semiconductor layer. The transparent dielectric layer is disposed on the second surface of the semiconductor layer, and covers the microstructures. The grid shielding layer extends from the first surface of the semiconductor layer toward the second surface of the semiconductor layer, and surrounds each of the light-sensing devices to separate the light-sensing devices from each other, in which a depth of the grid shielding layer is greater than two-thirds of a thickness of the semiconductor layer.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: July 19, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Chang Huang, Hsing-Chih Lin, Chien-Nan Tu, Yu-Lung Yeh
  • Publication number: 20160190191
    Abstract: A semiconductor device includes a substrate, a semiconductor layer, light-sensing devices, a transparent dielectric layer and a grid shielding layer. The semiconductor layer overlies the substrate, and has a first surface and a second surface opposite to the first surface. The semiconductor layer includes microstructures disposed on the second surface of the semiconductor layer. The light-sensing devices are disposed on the first surface of the semiconductor layer. The transparent dielectric layer is disposed on the second surface of the semiconductor layer, and covers the microstructures. The grid shielding layer extends from the first surface of the semiconductor layer toward the second surface of the semiconductor layer, and surrounds each of the light-sensing devices to separate the light-sensing devices from each other, in which a depth of the grid shielding layer is greater than two-thirds of a thickness of the semiconductor layer.
    Type: Application
    Filed: December 26, 2014
    Publication date: June 30, 2016
    Inventors: Chien-Chang HUANG, Hsing-Chih LIN, Chien-Nan TU, Yu-Lung YEH
  • Patent number: 9337229
    Abstract: A semiconductor device includes an epitaxial layer including a first surface and a silicon layer disposed on the first surface and including a second surface opposite to the first surface, wherein the silicon layer includes a plurality of pillars on the second surface, a portion of the plurality of pillars on a predetermined portion of the second surface are in substantially same dimension, each of the plurality of pillars on the predetermined portion of the second surface stands substantially orthogonal to the second surface, the plurality of pillars are configured for absorbing an electromagnetic radiation of a predetermined wavelength projected from the epitaxial layer and generating an electrical energy in response to the absorption of the electromagnetic radiation.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: May 10, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chien Nan Tu, Yu-Lung Yeh, Ming-Hsien Wu, Li-Ming Sun
  • Publication number: 20160071899
    Abstract: A method for forming an image-sensor device is provided. The method includes providing a first semiconductor substrate having a first surface and a second surface opposite to the first surface. The method includes forming a device layer over the first surface of the first semiconductor substrate. The method includes bonding the first semiconductor substrate to a second semiconductor substrate after the formation of the device layer. The second surface faces the second semiconductor substrate. The method includes forming a diffusion layer between the first semiconductor substrate and the second semiconductor substrate. The diffusion layer has a dopant concentration gradient that increases in a direction from the first semiconductor substrate toward the second semiconductor substrate.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 10, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Nan TU, Yu-Lung YEH, Ming-Hsien WU