Patents by Inventor Naofumi Nakamura

Naofumi Nakamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938961
    Abstract: A vehicle system includes: a map processing unit that creates local map data based on high accuracy map data and a position of an own vehicle; and an autonomous driving control unit that creates a travel plan for autonomous traveling of the own vehicle based on the local map data and controls traveling of the own vehicle according to the travel plan. The map processing unit creates multiple pieces of transmission data by dividing the local map data so as to correspond to regions on a map and transmits the multiple pieces of transmission data to the autonomous driving control unit. The map processing unit changes a shape and a size of the region on the map corresponding to each piece of transmission data based on selection information which decides a travel mode.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: March 26, 2024
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hidetoshi Chikamori, Kazumasa Nakamura, Hitoshi Konishi, Takuji Harayama, Tomoaki Masakawa, Naofumi Aso, Ryo Matsuzawa, Zhaoqi Wang
  • Patent number: 11913803
    Abstract: A data compression method is used for compressing data indicating a gradient of a route. The data compression method includes: acquiring a gradient table that shows gradient values in respective sections arranged between a starting point of the route and an ending point thereof, the sections including one section and an adjacent section adjacent to the one section: ranking the gradient values; and in a case where the gradient value of the one section and the gradient value of the adjacent section are in a same rank, integrating the gradient value of the one section and the gradient value of the adjacent section and generating a compressed gradient table that shows a distance and a corresponding rank of the section having the same rank.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 27, 2024
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hidetoshi Chikamori, Kazumasa Nakamura, Hitoshi Konishi, Takuji Harayama, Tomoaki Masakawa, Naofumi Aso, Ryo Matsuzawa, Zhaoqi Wang
  • Patent number: 11460482
    Abstract: According to one embodiment, a sensor includes a base body, a first movable structure body, and a first fixed structure body. The first movable structure body includes first movable electrodes. A direction from the base body toward the first movable electrodes is aligned with a first direction. A distance between the base body and the plurality of first movable electrodes is changeable. A direction from one of the first movable electrodes toward an other one of the first movable electrodes is aligned with a second direction crossing the first direction. The first fixed structure body includes first fixed electrodes. One of the first fixed electrodes is between the one of the first movable electrodes and the other one of the first movable electrodes. A first movable electrode length along the first direction is shorter than a first fixed electrode length along the first direction.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: October 4, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira Fujimoto, Hideyuki Tomizawa, Akiko Yuzawa, Naofumi Nakamura
  • Patent number: 11214481
    Abstract: According to one embodiment, a MEMS element includes a base body, a supporter, a film part, a first electrode, a second electrode, and an insulating member. The supporter is fixed to the base body. The film part is separated from the base body in a first direction and supported by the supporter. The first electrode is fixed to the base body and provided between the base body and the film part. The second electrode is fixed to the film part and provided between the first electrode and the film part. The insulating member includes a first insulating region and a second insulating region. The first insulating region is provided between the first electrode and the second electrode. A first gap is provided between the first insulating region and the second electrode. The second insulating region does not overlap the first electrode in the first direction.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: January 4, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Fumitaka Ishibashi, Naofumi Nakamura, Hiroaki Yamazaki, Tomohiro Saito, Tomohiko Nagata, Kei Masunishi, Yoshihiko Kurui
  • Patent number: 11205544
    Abstract: According to one embodiment, a sensor includes a base body, a first structure body, and a second structure body. The first structure body includes a first fixed portion, a first conductive portion, and first electrodes. The first fixed portion is fixed to the base body. The first conductive portion is held by the first fixed portion. The first conductive portion is separated from the base body in a first direction. The first electrodes are held by the first conductive portion. A distance between the base body and the first electrodes is changeable. The second structure body includes a second conductive portion and second electrodes. The second conductive portion is fixed to the base body. The second electrodes are held by the second conductive portion. One of the second electrodes is between the one of the first electrodes and the other one of the first electrodes.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: December 21, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira Fujimoto, Hideyuki Tomizawa, Naofumi Nakamura
  • Patent number: 11169035
    Abstract: According to one embodiment, a pressure sensor includes a base body, a supporter, a film part, a first electrode, and a second electrode. The supporter is fixed to the base body. The film part is separated from the base body. The film part includes first, second, and third partial regions, and a rim portion. The rim portion is supported by the supporter. The second partial region is between the first partial region and the rim portion. The third partial region is between the second partial region and the rim portion. The first electrode is provided between the base body and the first partial region and between the base body and the second partial region. The first electrode is fixed to the base body. The second electrode is provided between the first electrode and the first partial region and between the first electrode and the second partial region.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 9, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kei Masunishi, Naofumi Nakamura, Hiroaki Yamazaki, Tomohiro Saito, Fumitaka Ishibashi, Yoshihiko Kurui, Tomohiko Nagata
  • Patent number: 11123785
    Abstract: In this part that includes a cut end surface consisting of a surface-treated steel sheet that has been cut, the shape of the cut end surface is such that the length of a first shear droop occurring in the sheet thickness direction is at least 0.10 times the sheet thickness of the surface-treated steel sheet, and the length of a second sheer droop occurring in the planar direction is at least 0.45 times the sheet thickness of the surface-treated steel sheet. Furthermore, in the cutting process a die is used for which the clearance between the punch and the die is 1-20% of the plate thickness of the surface-treated steel plate, and the shoulder portion of the die and/or the punch is provided with a radius of curvature of at least 0.12 times the plate thickness of the surface-treated steel plate.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: September 21, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hirokazu Sasaki, Naofumi Nakamura, Yudai Yamamoto
  • Patent number: 11117178
    Abstract: The invention provides a formed material manufacturing method by which unnecessary thickening of a flange can be avoided. The formed material manufacturing method allows a formed material to be manufactured by forming processes that include at least one drawing-out process, at least one drawing process performed after the drawing-out process, and at least one coining process performed after the drawing process. The width of the rear end side of a punch used in the drawing-out process is set to be wider than the width of the tip end side thereof. An ironing process is performed on a region corresponding to the flange of the base metal sheet by pushing the base metal sheet together with the punch into a pushing hole.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: September 14, 2021
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Naofumi Nakamura, Yudai Yamamoto, Katsuhide Nishio
  • Patent number: 11072013
    Abstract: A formed material 1 having a cylindrical trunk portion 10 and a flange portion 11 formed at an end section of the trunk portion is manufactured by performing multi-stage drawing of a material metal sheet. Multi-stage drawing includes: preliminary drawing that forms, from a material metal sheet 2, a preform 20 having a trunk element 20a; compression drawing that is performed at least once after the preliminary drawing and that forms the trunk portion 10 by drawing the trunk element 20a while applying a pressure-adjustable compressive force to the trunk element 20a; and finish-ironing that is performed for securing dimensional precision at least once following the compression drawing.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: July 27, 2021
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Naofumi Nakamura, Yudai Yamamoto
  • Publication number: 20210096099
    Abstract: According to one embodiment, an analysis chip for detection of particles in a sample liquid includes a substrate, a channel provided on a surface portion of the substrate, a liquid storage portion provided on a part of the channel to store the sample liquid, holes being provided at a bottom portion of the liquid storage portion to connect the liquid storage portion and the channel, and first electrodes provided in the channel or the liquid storage portion.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 1, 2021
    Inventors: Kentaro Kobayashi, Hiroshi Hamasaki, Ping Wang, Naofumi Nakamura
  • Publication number: 20210063432
    Abstract: According to one embodiment, a sensor includes a base body, a first movable structure body, and a first fixed structure body. The first movable structure body includes first movable electrodes. A direction from the base body toward the first movable electrodes is aligned with a first direction. A distance between the base body and the plurality of first movable electrodes is changeable. A direction from one of the first movable electrodes toward an other one of the first movable electrodes is aligned with a second direction crossing the first direction. The first fixed structure body includes first fixed electrodes. One of the first fixed electrodes is between the one of the first movable electrodes and the other one of the first movable electrodes. A first movable electrode length along the first direction is shorter than a first fixed electrode length along the first direction.
    Type: Application
    Filed: March 11, 2020
    Publication date: March 4, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira FUJIMOTO, Hideyuki TOMIZAWA, Akiko YUZAWA, Naofumi NAKAMURA
  • Publication number: 20210065990
    Abstract: According to one embodiment, a sensor includes a base body, a first structure body, and a second structure body. The first structure body includes a first fixed portion, a first conductive portion, and first electrodes. The first fixed portion is fixed to the base body. The first conductive portion is held by the first fixed portion. The first conductive portion is separated from the base body in a first direction. The first electrodes are held by the first conductive portion. A distance between the base body and the first electrodes is changeable. The second structure body includes a second conductive portion and second electrodes. The second conductive portion is fixed to the base body. The second electrodes are held by the second conductive portion. One of the second electrodes is between the one of the first electrodes and the other one of the first electrodes.
    Type: Application
    Filed: March 11, 2020
    Publication date: March 4, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira FUJIMOTO, Hideyuki TOMIZAWA, Naofumi NAKAMURA
  • Publication number: 20210047171
    Abstract: According to one embodiment, a MEMS element includes a base body, a supporter, a film part, a first electrode, a second electrode, and an insulating member. The supporter is fixed to the base body. The film part is separated from the base body in a first direction and supported by the supporter. The first electrode is fixed to the base body and provided between the base body and the film part. The second electrode is fixed to the film part and provided between the first electrode and the film part. The insulating member includes a first insulating region and a second insulating region. The first insulating region is provided between the first electrode and the second electrode. A first gap is provided between the first insulating region and the second electrode. The second insulating region does not overlap the first electrode in the first direction.
    Type: Application
    Filed: March 4, 2020
    Publication date: February 18, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Fumitaka ISHIBASHI, Naofumi NAKAMURA, Hiroaki YAMAZAKI, Tomohiro SAITO, Tomohiko NAGATA, Kei MASUNISHI, Yoshihiko KURUI
  • Publication number: 20210041311
    Abstract: According to one embodiment, a pressure sensor includes a base body, a supporter, a film part, a first electrode, and a second electrode. The supporter is fixed to the base body. The film part is separated from the base body. The film part includes first, second, and third partial regions, and a rim portion. The rim portion is supported by the supporter. The second partial region is between the first partial region and the rim portion. The third partial region is between the second partial region and the rim portion. The first electrode is provided between the base body and the first partial region and between the base body and the second partial region. The first electrode is fixed to the base body. The second electrode is provided between the first electrode and the first partial region and between the first electrode and the second partial region.
    Type: Application
    Filed: February 13, 2020
    Publication date: February 11, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kei MASUNISHI, Naofumi Nakamura, Hiroaki Yamazaki, Tomohiro Saito, Fumitaka Ishibashi, Yoshihiko Kurui, Tomohiko Nagata
  • Patent number: 10908035
    Abstract: According to one embodiment, a pressure sensor is disclosed. The pressure sensor includes a substrate, and a first capacitor element. The first capacitor element includes a lower electrode provided on the substrate, an upper electrode disposed above the lower electrode, and a film provided over the lower electrode and upper electrode. The lower electrode and the upper electrode are between the substrate and the film. An absolute value of an amount of change in an electrostatic capacitance between the lower electrode and the upper electrode with respect to unit change in an ambient temperature of the first capacitor element is substantially zero.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: February 2, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Masunishi, Naofumi Nakamura, Hiroaki Yamazaki, Tomohiro Saito, Fumitaka Ishibashi, Yoshihiko Kurui, Tomohiko Nagata
  • Patent number: 10894283
    Abstract: Provided are: a method for producing a molded material comprising tubular body and a flange formed at an end portion of the body; and a molded material produced thereby, which can prevent the flange of the molded material becoming unnecessarily thick, avoid the generation of wrinkles and buckling, and allow weight reduction of the molded material and size reduction of a base metal sheet. When producing the molded material by molding processes including at least one drawing-out process and at least one drawing process performed after the drawing-out process, a first drawing process is carried out on a region corresponding to the body while opening a die and a drawing sleeve, and an ironing process is carried out on a region corresponding to the flange while keeping a constant interval of a mold gap between the die and the drawing sleeve.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: January 19, 2021
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Naofumi Nakamura, Yudai Yamamoto
  • Patent number: 10799931
    Abstract: A formed material manufacturing method according to present invention includes the steps of forming a convex formed portion by performing at least one forming process on a surface treated metal plate, and performing ironing on the formed portion using an ironing mold after forming the formed portion. The ironing mold includes a punch that is inserted into the formed portion, and a die having a pushing hole into which the formed portion is pushed together with the punch. An inner peripheral surface of the pushing hole extends non-parallel to an outer peripheral surface of the punch, and the inner peripheral surface is provided with a clearance that corresponds to an uneven plate thickness distribution, in the pushing direction, of the formed portion prior to the ironing relative to the outer peripheral surface to ensure that an amount of ironing applied to the formed portion remains constant in the pushing direction.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: October 13, 2020
    Assignee: NIPPON STEEL NISSHIN CO., LTD.
    Inventors: Naofumi Nakamura, Yudai Yamamoto, Jun Kurobe
  • Patent number: 10786843
    Abstract: A method for manufacturing a molded member includes carrying out a multi-stage drawing process and at least one finishing ironing process on a base metal sheet, the molded member including a tubular body and a flange formed at an end portion of the body. The multi-stage drawing process includes a preliminary drawing process for forming a preliminary body having a body element from the base metal sheet, and a plurality of compression drawing processes performed after the preliminary drawing process, the compression drawing processes drawing the body element while applying compressive force along a depth direction of the body element to a circumferential wall of the body element. The at least one finishing ironing process is carried out such that a mold clearance of an upper portion of the body element is narrower than a mold clearance of a lower portion of the body element.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 29, 2020
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Naofumi Nakamura, Yudai Yamamoto
  • Publication number: 20200300717
    Abstract: According to one embodiment, a pressure sensor is disclosed. The pressure sensor includes a substrate, and a first capacitor element. The first capacitor element includes a lower electrode provided on the substrate, an upper electrode disposed above the lower electrode, and a film provided over the lower electrode and upper electrode. The lower electrode and the upper electrode are between the substrate and the film. An absolute value of an amount of change in an electrostatic capacitance between the lower electrode and the upper electrode with respect to unit change in an ambient temperature of the first capacitor element is substantially zero.
    Type: Application
    Filed: September 11, 2019
    Publication date: September 24, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kei Masunishi, Naofumi Nakamura, Hiroaki Yamazaki, Tomohiro Saito, Fumitaka Ishibashi, Yoshihiko Kurui, Tomohiko Nagata
  • Patent number: 10533934
    Abstract: According to one embodiment, a particle inspection system includes a voltage driving circuit which applies a driving voltage for a particle inspection to a particle inspection chip, a current-voltage conversion circuit which converts, into a voltage signal, a current signal output from the particle inspection chip when the driving voltage is applied to the particle inspection chip, a detection circuit which detects, based on the voltage signal, whether the sample liquid is introduced into a detection region of the particle inspection chip, and an analysis circuit which analyzes the fine particle, in the sample liquid based on the voltage signal. The voltage driving circuit varies the driving voltage based on the detection result of the detection circuit.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: January 14, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Michihiko Nishigaki, Hiroshi Hamasaki, Naofumi Nakamura, Kentaro Kobayashi, Hiroko Miki