Patents by Inventor Naoshi Itabashi

Naoshi Itabashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220214326
    Abstract: A biopolymer analysis device includes an insulating thin film that is made of an inorganic material, a first liquid tank and a second liquid tank that are separated by the thin film, a plurality of first electrodes that is arranged in the first liquid tank, and a second electrode that is disposed in the second liquid tank. A water-repellent liquid and a plurality of liquid droplets are introduced into the first liquid tank, the plurality of first electrodes is configured to be able to convey the plurality of droplets introduced into the first liquid tank by electro wetting on dielectric by applying a certain voltage, and the plurality of droplets is conveyed to portions coming into contact with the plurality of first electrodes, and is insulated from each other by the water-repellent liquid.
    Type: Application
    Filed: April 24, 2019
    Publication date: July 7, 2022
    Applicant: HITACHI HIGH-TECH CORPORATION
    Inventors: Yusuke GOTO, Michiru FUJIOKA, Tatsuo NAKAGAWA, Yoshimitsu YANAGAWA, Naoshi ITABASHI
  • Patent number: 11181502
    Abstract: While an insulating film having a near-field light generating element placed thereon is being irradiated with light in an electrolytic solution, or after the film that has been irradiated with light is disposed in the electrolytic solution, a first voltage is applied between the two electrodes installed in the electrolytic solution across the film, a second voltage is then applied between the two electrodes, and a value of a current that flows between the two electrodes due to the application of the second voltage is detected. This procedure is stopped when the current value reaches or exceeds a pre-set threshold value, whereby a hole is formed at a desired location in the thin-film.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: November 23, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Naoshi Itabashi, Sonoko Migitaka, Itaru Yanagi, Rena Akahori, Kenichi Takeda
  • Publication number: 20210348227
    Abstract: At the positions of spots which are arranged on a substrate, image aligning is made difficult by the occurrence of a recognition error of the positions of spots, said spots being adjacent to each other in a patterned form, or a displacement caused by the expansion or deformation of the substrate due to device operation, temperature control, etc. The present invention provides: a substrate for nucleic acid analysis, on the surface of which a patterned spot area provided with spots to which a biopolymer is adhered and a randomly distributed spot area are formed; and an analysis method.
    Type: Application
    Filed: December 24, 2019
    Publication date: November 11, 2021
    Applicant: HITACHI HIGH-TECH CORPORATION
    Inventors: Noriko Baba, Masatoshi Narahara, Naoshi Itabashi, Toru Yokoyama
  • Publication number: 20210316310
    Abstract: Provided is a technique for moving all of a droplet from a microchannel in which the droplet have been introduced to another layer. The droplet transport device of the present disclosure includes a substrate having a through-hole or a recess, a first electrode provided on the substrate along the surface of the substrate and arranged at a position adjacent to the through-hole or the recess, a plurality of second electrodes provided on the substrate along a surface of the substrate and to which a voltage for moving the droplet introduced on the substrate is applied, and a dielectric layer covering the surface of the substrate, the first electrode, and the second electrodes, and a water-repellent film provided on the inner wall surface of the through-hole or the recess, and on the dielectric layer.
    Type: Application
    Filed: April 1, 2021
    Publication date: October 14, 2021
    Inventors: Naoshi Itabashi, Michiru Fujioka, Shuhei Yamamoto, Yoshimitsu Yanagawa, Yusuke Goto
  • Patent number: 11130985
    Abstract: In order to reduce the cost of producing a spot array substrate and reduce the cost of nucleic acid polymer analysis, a spot array substrate is used which is produced by preparing a resin substrate 402 having a surface on which an uneven pattern is formed and a plurality of bead sitting positions set in a two-dimensional array within the uneven pattern, and loading surface-modified beads onto the bead sitting positions of the resin substrate.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: September 28, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Naoshi Itabashi, Sonoko Migitaka, Masatoshi Narahara, Tomohiro Shoji, Yukio Ono
  • Publication number: 20200102587
    Abstract: Provided are a method and apparatus for forming clusters of amplified nucleic acid fragments without amplification bias, in a regular arrangement on a substrate. In the method according to the present invention, droplets enclosing the template nucleic acid are formed on a substrate that has a plurality of first surfaces having hydrophilicity and a second surface surrounding each of the plurality of first surfaces and being less hydrophilic than the first surfaces. Then, after a nucleic acid amplification reaction is performed in the droplets on the substrate, the droplets are removed and a nucleic acid amplification reaction is further performed on the substrate.
    Type: Application
    Filed: April 5, 2017
    Publication date: April 2, 2020
    Inventors: Takahide YOKOI, Chihiro UEMATSU, Naoshi ITABASHI
  • Patent number: 10481125
    Abstract: To a biomolecule measuring apparatus, a semiconductor sensor for detecting ions generated by a reaction between a biomolecular sample and a reagent is set. The semiconductor sensor has a plurality of cells which are arranged on a semiconductor substrate, and each of which detects ions, and a plurality of readout wires. Each of the plurality of cells has an ISFET which has a floating gate and which detects ions, a first MOSFET M2 for amplifying an output from the ISFET, and a second MOSFET M3 which selectively transmits an output from the first MOSFET to a corresponding readout wire R1. Each of the plurality of cells is provided with a third MOSFET M1 which generates hot electrons in the ISFET and which injects a charge to the floating gate of the ISFET. Here, the second MOSFET and the third MOSFET are separately controlled.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: November 19, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takayuki Kawahara, Yoshimitsu Yanagawa, Naoshi Itabashi, Riichiro Takemura
  • Patent number: 10451584
    Abstract: Provided is a biomolecule measuring device capable of effectively reducing measurement noise occurring when measuring a biomolecule sample using a semiconductor sensor. This biomolecule measuring device generates a trigger to react a sample with a reagent after starting to send the reagent onto the semiconductor sensor that detects ion concentration (see FIG. 7).
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: October 22, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshimitsu Yanagawa, Takahide Yokoi, Naoshi Itabashi, Takayuki Kawahara, Sonoko Migitaka, Makiko Yoshida, Takamichi Muramatsu
  • Patent number: 10031083
    Abstract: The purpose of the present invention is to control, with a simple structure and high accuracy, irradiation of excitation light to a multi-nanopore substrate without interrupting a measurement. Irradiation of excitation light is performed concurrently to at least one nanopore and at least one reference object on a substrate mounted in an observation container 103. A position irradiated with the excitation light in a measurement sample is calculated on the basis of a signal generated from the reference object detected by a detector 109, and the measurement and a fixed position control is performed concurrently by performing measurement of the measurement object while a drive control part 115 controlling the position of the irradiation of the excitation light to the measurement sample on the basis of the calculation result, whereby an analysis of the measurement sample can be performed in a short time.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: July 24, 2018
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Michiru Fujioka, Tsuyoshi Sonehara, Naoshi Itabashi
  • Patent number: 9997337
    Abstract: The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor, a lower electrode placed within a processing chamber of the vacuum reactor and having a wafer to be etched mounted on the upper surface thereof, bias supplying units and for supplying high frequency power for forming a bias potential to the lower electrode, a gas supply means for feeding reactive gas into the processing chamber, an electric field supplying means through for supplying a magnetic field for generating plasma in the processing chamber, and a control unit for controlling the distribution of ion energy in the plasma being incident on the wafer via the high frequency power.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: June 12, 2018
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Masahito Mori, Naoyuki Kofuji, Naoshi Itabashi
  • Publication number: 20170307532
    Abstract: The purpose of the present invention is to control, with a simple structure and high accuracy, irradiation of excitation light to a multi-nanopore substrate without interrupting a measurement. Irradiation of excitation light is performed concurrently to at least one nanopore and at least one reference object on a substrate mounted in an observation container 103. A position irradiated with the excitation light in a measurement sample is calculated on the basis of a signal generated from the reference object detected by a detector 109, and the measurement and a fixed position control is performed concurrently by performing measurement of the measurement object while a drive control part 115 controlling the position of the irradiation of the excitation light to the measurement sample on the basis of the calculation result, whereby an analysis of the measurement sample can be performed in a short time.
    Type: Application
    Filed: October 16, 2014
    Publication date: October 26, 2017
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Michiru FUJIOKA, Tsuyoshi SONEHARA, Naoshi ITABASHI
  • Publication number: 20170260573
    Abstract: In order to reduce the cost of producing a spot array substrate and reduce the cost of nucleic acid polymer analysis, a spot array substrate is used which is produced by preparing a resin substrate 402 having a surface on which an uneven pattern is formed and a plurality of bead sitting positions set in a two-dimensional array within the uneven pattern, and loading surface-modified beads onto the bead sitting positions of the resin substrate.
    Type: Application
    Filed: October 7, 2015
    Publication date: September 14, 2017
    Inventors: Naoshi ITABASHI, Sonoko MIGITAKA, Masatoshi NARAHARA, Tomohiro SHOJI, Yukio ONO
  • Patent number: 9759681
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 12, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Patent number: 9702695
    Abstract: An object of the present invention is to provide an image processing apparatus that quickly and precisely measures or evaluates a distortion in a field of view and a charged particle beam apparatus. To attain the object, an image processing apparatus or the like is proposed which acquires a first image of a first area of an imaging target and a second image of a second area that is located at a different position than the first area and partially overlaps with the first area and determines the distance between a measurement point in the second image and a second part of the second image that corresponds to a particular area for a plurality of sites in the overlapping area of the first image and the second image.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 11, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroki Kawada, Osamu Inoue, Miyako Matsui, Takahiro Kawasaki, Naoshi Itabashi, Takashi Takahama, Katsumi Setoguchi, Osamu Komuro
  • Publication number: 20170138899
    Abstract: While an insulating film having a near-field light generating element placed thereon is being irradiated with light in an electrolytic solution, or after the film that has been irradiated with light is disposed in the electrolytic solution, a first voltage is applied between the two electrodes installed in the electrolytic solution across the film, a second voltage is then applied between the two electrodes, and a value of a current that flows between the two electrodes due to the application of the second voltage is detected. This procedure is stopped when the current value reaches or exceeds a pre-set threshold value, whereby a hole is formed at a desired location in the thin-film.
    Type: Application
    Filed: March 26, 2015
    Publication date: May 18, 2017
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Naoshi ITABASHI, Sonoko MIGITAKA, Itaru YANAGI, Rena AKAHORI, Kenichi TAKEDA
  • Publication number: 20160245777
    Abstract: To a biomolecule measuring apparatus, a semiconductor sensor for detecting ions generated by a reaction between a biomolecular sample and a reagent is set. The semiconductor sensor has a plurality of cells which are arranged on a semiconductor substrate, and each of which detects ions, and a plurality of readout wires. Each of the plurality of cells has an ISFET which has a floating gate and which detects ions, a first MOSFET M2 for amplifying an output from the ISFET, and a second MOSFET M3 which selectively transmits an output from the first MOSFET to a corresponding readout wire R1. Each of the plurality of cells is provided with a third MOSFET M1 which generates hot electrons in the ISFET and which injects a charge to the floating gate of the ISFET. Here, the second MOSFET and the third MOSFET are separately controlled.
    Type: Application
    Filed: October 2, 2014
    Publication date: August 25, 2016
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takayuki Kawahara, Yoshimitsu Yanagawa, Naoshi Itabashi, Riichiro Takemura
  • Patent number: 9293300
    Abstract: There is provided a plasma processing apparatus that can generate uniform plasma without increasing costs per unit electric power even though the discharge area is increased to adapt to samples in given sizes by arranging a plurality of plasma discharge units. A plasma processing apparatus includes an RF power supply having an RF signal circuit and an RF power circuit, a case, and a discharge electrode. A plasma module is configured of the discharge electrode and the RF power circuit provided in the case. A frequency signal from the RF signal circuit is inputted to a plurality of the plasma modules connected in parallel with each other.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: March 22, 2016
    Assignee: HITACHI, LTD.
    Inventors: Hiroyuki Kobayashi, Hideyuki Nagaishi, Takumi Tandou, Naoshi Itabashi
  • Publication number: 20150362458
    Abstract: Provided is a biomolecule measuring device capable of effectively reducing measurement noise occurring when measuring a biomolecule sample using a semiconductor sensor. This biomolecule measuring device generates a trigger to react a sample with a reagent after starting to send the reagent onto the semiconductor sensor that detects ion concentration (see FIG. 7).
    Type: Application
    Filed: November 18, 2013
    Publication date: December 17, 2015
    Inventors: Yoshimitsu YANAGAWA, Takahide YOKOI, Naoshi ITABASHI, Takayuki KAWAHARA, Sonoko MIGITAKA, Makiko YOSHIDA, Takamichi MURAMATSU
  • Publication number: 20150348763
    Abstract: The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor, a lower electrode placed within a processing chamber of the vacuum reactor and having a wafer to be etched mounted on the upper surface thereof, bias supplying units and for supplying high frequency power for forming a bias potential to the lower electrode, a gas supply means for feeding reactive gas into the processing chamber, an electric field supplying means through for supplying a magnetic field for generating plasma in the processing chamber, and a control unit for controlling the distribution of ion energy in the plasma being incident on the wafer via the high frequency power.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 3, 2015
    Inventors: Masahito MORI, Naoyuki KOFUJI, Naoshi ITABASHI
  • Publication number: 20150308977
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 29, 2015
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi