Patents by Inventor Naoto Kusumoto

Naoto Kusumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060273319
    Abstract: It is an object of the present invention to improve a factor which influences productivity such as variation caused by a characteristic defect of a circuit by thinning or production yield when an integrated circuit device in which a substrate is thinned is manufactured. A stopper layer is formed over one surface of a substrate, and an element is formed over the stopper layer, and then, the substrate is thinned from the other surface thereof. A method in which a substrate is ground or polished or a method in which the substrate is etched by chemical reaction is used as a method for thinning or removing the substrate.
    Type: Application
    Filed: May 30, 2006
    Publication date: December 7, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Naoto Kusumoto, Takuya Tsurume
  • Publication number: 20060270114
    Abstract: The present invention provides a semiconductor device having a structure that can be mounted on a wiring substrate, as for the semiconductor device formed over a thin film-thickness substrate, a film-shaped substrate, or a sheet-like substrate. In addition, the present invention provides a method for manufacturing a semiconductor device that is capable of raising a reliability of mounting on a wiring substrate. One feature of the present invention is to bond a semiconductor element formed on a substrate having isolation to a member that a conductive film is formed via a medium having an anisotropic conductivity.
    Type: Application
    Filed: August 3, 2006
    Publication date: November 30, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Hiroki Adachi, Naoto Kusumoto, Yuusuke Sugawara, Hidekazu Takahashi, Daiki Yamada, Yoshikazu Hiura
  • Publication number: 20060270236
    Abstract: To provide a thin film integrated circuit at low cost and with thin thickness, which is applicable to mass production unlike the conventional glass substrate or the single crystalline silicon substrate, and a structure and a process of a thin film integrated circuit device or an IC chip having the thin film integrated circuit. A manufacturing method of a semiconductor device includes the steps of forming a first insulating film over one surface of a silicon substrate, forming a layer having at least two thin film integrated circuits over the first insulating film, forming a resin layer so as to cover the layer having the thin film integrated circuit, forming a film so as to cover the resin layer, grinding a backside of one surface of the silicon substrate which is formed with the layer having the thin film integrated circuit, and polishing the ground surface of the silicon substrate.
    Type: Application
    Filed: May 18, 2006
    Publication date: November 30, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Takuya Tsurume
  • Publication number: 20060270195
    Abstract: It is an object to improve a yield of a step of cutting off a substrate. A substrate is cut off by using an ablation process. An ablation process uses a phenomenon in which a molecular bond in a portion irradiated with a laser beam, that is, a portion which absorbs the laser beam is cut off, photodegraded, and evaporated. In other words, a substrate is irradiated with a laser beam, a molecular bond in a portion of the substrate is cut off, photodegraded, and evaporated; accordingly, a groove is formed in the substrate. A method for cutting the substrate has steps of selectively emitting a laser beam and forming a groove in the substrate, and selectively emitting a laser beam to the groove and cutting off the substrate. Methods for manufacturing a groove in a substrate and cutting off a substrate are used for manufacturing a semiconductor device.
    Type: Application
    Filed: May 30, 2006
    Publication date: November 30, 2006
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Daiki Yamada, Naoto Kusumoto
  • Publication number: 20060260675
    Abstract: The present invention provides a photoelectric conversion device in which a leakage current is suppressed. A photoelectric conversion device of the present invention comprises: a first electrode over a substrate; a photoelectric conversion layer including a first conductive layer having one conductivity, a second semiconductor layer, and a third semiconductor layer having a conductivity opposite to the one conductivity of the second semiconductor layer over the first electrode, wherein an end portion of the first electrode is covered with the first semiconductor layer; an insulating film, and a second electrode electrically connected to the third semiconductor film with the insulating film therebetween, over the insulating film, are formed over the third semiconductor film, and wherein a part of the second semiconductor layer and a part of the third semiconductor layer is removed in a region of the photoelectric conversion layer, which is not covered with the insulating film.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 23, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuusuke Sugawara, Kazuo Nishi, Tatsuya Arao, Daiki Yamada, Hidekazu Takahashi, Naoto Kusumoto
  • Publication number: 20060228837
    Abstract: There is provided an improvement on homogeneity of annealing performed utilizing radiation of a laser beam on a silicon film having a large area. In a configuration wherein a linear laser beam is applied to a surface to be irradiated, optimization is carried out on the width and number of cylindrical lenses forming homogenizers 103 and 104 for controlling the distribution of radiation energy density in the longitudinal direction of the linear beam. For example, the width of the cylindrical lenses forming the homogenizers 103 and 104 is set in the range from 0.1 mm to 5 mm, and the number of the lenses is chosen such that one lens is provided for every 5 mm-15 mm along the length of the linear laser beam in the longitudinal direction thereof. This makes it possible to improve homogeneity of the radiation energy density of the linear laser in the longitudinal direction thereof.
    Type: Application
    Filed: June 2, 2006
    Publication date: October 12, 2006
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Koichiro Tanaka
  • Publication number: 20060211182
    Abstract: A laser-annealing method includes the steps of a first step of cleaning a non-monocrystal silicon film formed on a substrate, and a second step of laser-annealing the non-monocrystal silicon film in an atmosphere containing oxygen therein, wherein the first and second steps are conducted continuously without being exposed to the air. Also, a laser-annealing device includes a cleaning chamber, and a laser irradiation chamber, wherein a substrate to be processed is transported between the cleaning chamber and the laser irradiation chamber without being exposed to the air.
    Type: Application
    Filed: May 8, 2006
    Publication date: September 21, 2006
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Naoto Kusumoto, Toru Takayama, Masato Yonezawa
  • Patent number: 7071035
    Abstract: There is provided an improvement on homogeneity of annealing performed utilizing radiation of a laser beam on a silicon film having a large area. In a configuration wherein a linear laser beam is applied to a surface to be irradiated, optimization is carried out on the width and number of cylindrical lenses forming homogenizers 103 and 104 for controlling the distribution of radiation energy density in the longitudinal direction of the linear beam. For example, the width of the cylindrical lenses forming the homogenizers 103 and 104 is set in the range from 0.1 mm to 5 mm, and the number of the lenses is chosen such that one lens is provided for every 5 mm–15 mm along the length of the linear laser beam in the longitudinal direction thereof. This makes it possible to improve homogeneity of the radiation energy density of the linear laser in the longitudinal direction thereof.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: July 4, 2006
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Koichiro Tanaka
  • Publication number: 20060141688
    Abstract: An amorphous semiconductor film is etched so that a width of a narrowest portion thereof is 100 ?m or less, thereby forming island semiconductor regions. By irradiating an intense light such as a laser into the island semiconductor regions, photo-annealing is performed to crystallize it. Then, of end portions (peripheral portions) of the island semiconductor regions, at least a portion used to form a channel of a thin film transistor (TFT), or a portion that a gate electrode crosses is etched, so that a region that the distortion is accumulated is removed. By using such semiconductor regions, a TFT is produced.
    Type: Application
    Filed: March 6, 2006
    Publication date: June 29, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Shunpei Yamazaki
  • Patent number: 7045403
    Abstract: An amorphous miconductor film is etched so that a width of a narrowest portion thereof is 100 ?m or less, thereby forming island semiconductor regions. By irradiating an intense light such as a laser into the island semiconductor regions, photo-annealing is performed to crystallize it. Then, of end portions (peripheral portions) of the island semiconductor regions, at least a portion used to form a channel of a thin film transistor (TFT), or a portion that a gate electrode crosses is etched, so that a region that the distortion is accumulated is removed. By using such semiconductor regions, a TFT is produced.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: May 16, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Shunpei Yamazaki
  • Patent number: 7041580
    Abstract: A laser-annealing method includes the steps of a first step of cleaning a non-monocrystal silicon film formed on a substrate, and a second step of laser-annealing the non-monocrystal silicon film in an atmosphere containing oxygen therein, wherein the first and second steps are conducted continuously without being exposed to the air. Also, a laser-annealing device includes a cleaning chamber, and a laser irradiation chamber, wherein a substrate to be processed is transported between the cleaning chamber and the laser irradiation chamber without being exposed to the air.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: May 9, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Toru Takayama, Masato Yonezawa
  • Publication number: 20060091386
    Abstract: In a process for manufacturing a thin film transistor having a semiconductor layer constituting source and drain regions and a channel forming region, by the semiconductor layer being made thinner in the source and drain regions than in the channel forming region a structure is realized wherein, at the boundary between the source region and the channel forming region and the boundary between the drain region and the channel forming region, portions where electric field concentrations occur are displaced from the portion where a channel is formed. By reducing the OFF current (the leak current) without also reducing the ON current, a high mutual conductance is realized.
    Type: Application
    Filed: December 16, 2005
    Publication date: May 4, 2006
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Naoto Kusumoto
  • Publication number: 20060055014
    Abstract: The present invention provides a new type wireless chip that can be used without being fixed on a product. Specifically, a wireless chip can have a new function by a sealing step. One feature of a wireless chip according to the present invention is to have a structure in which an integrated circuit is sealed by films. In particular, the films sealing the integrated circuit have a hollow structure; therefore the wireless chip can have a new function.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 16, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Tsurume, Koji Dairiki, Naoto Kusumoto
  • Patent number: 7011993
    Abstract: In a process for manufacturing a thin film transistor having a semiconductor layer constituting source and drain regions and a channel forming region, by the semiconductor layer being made thinner in the source and drain regions than in the channel forming region a structure is realized wherein, at the boundary between the source region and the channel forming region and the boundary between the drain region and the channel forming region, portions where electric field concentrations occur are displaced from the portion where a channel is formed. By reducing the OFF current (the leak current) without also reducing the ON current, a high mutual conductance is realized.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: March 14, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Naoto Kusumoto
  • Publication number: 20060030166
    Abstract: In crystallizing an amorphous silicon film by illuminating it with linear pulse laser beams having a normal-distribution type beam profile or a similar beam profile, the linear pulse laser beams are applied in an overlapped manner. There can be obtained effects similar to those as obtained by a method in which the laser illumination power is gradually increased and then decreased in a step-like manner in plural scans.
    Type: Application
    Filed: August 15, 2005
    Publication date: February 9, 2006
    Inventors: Naoto Kusumoto, Koichiro Tanaka
  • Publication number: 20050260834
    Abstract: A preparing method of a semiconductor, particularly a preparing method of a polycrystal semiconductor film which has a good electrical property is disclosed. In order to obtain a non-crystalline silicon film containing a lot of combination of hydrogen and silicon, a forming process of a non-crystalline silicon film by a low temperature gas phase chemical reaction, a process of a heat annealing to produce a lot of dangling bonds of silicon, so as to draw out hydrogen from said non-crystalline silicon film, and a process of applying a laser irradiation to said non-crystal silicon film having a lot of dangling bond of silicon are conducted.
    Type: Application
    Filed: August 1, 2005
    Publication date: November 24, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Naoto Kusumoto
  • Publication number: 20050235914
    Abstract: With a conventional cylindrical can method, a region used as a film formation ground electrode is a portion of the cylindrical can, and an apparatus becomes larger in size in proportion to the surface area of the electrode. A conveyor device and a film formation apparatus having the conveyor device are provided, which have a unit for continuously conveying a flexible substrate from one end to the other end, and which are characterized in that a plurality of cylindrical rollers are provided between the one end and the other end along an arc with a radius R, the cylindrical rollers being arranged such that their center axes run parallel to each other, and that a mechanism for conveying the flexible substrate while the substrate is in contact with each of the plurality of cylindrical rollers is provided.
    Type: Application
    Filed: June 22, 2005
    Publication date: October 27, 2005
    Inventors: Masato Yonezawa, Naoto Kusumoto, Hisato Shinohara
  • Publication number: 20050208714
    Abstract: A method of manufacturing a semiconductor device, comprises the steps of: forming an amorphous silicon film on a substrate having an insulating surface; processing said amorphous silicon film by plasma of a gas that mainly contains hydrogen or helium; and giving an energy to said amorphous silicon film.
    Type: Application
    Filed: May 23, 2005
    Publication date: September 22, 2005
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Hideto Ohnuma
  • Patent number: 6947452
    Abstract: In crystallizing an amorphous silicon film by illuminating it with linear pulse laser beams having a normal-distribution type beam profile or a similar beam profile, the linear pulse laser beams are applied in an overlapped manner. There can be obtained effects similar to those as obtained by a method in which the laser illumination power is gradually increased and then decreased in a step-like manner in plural scans.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: September 20, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Koichiro Tanaka
  • Patent number: 6933182
    Abstract: A method of manufacturing a semiconductor device, comprises the steps of: forming an amorphous silicon film on a substrate having an insulating surface; processing said amorphous silicon film by plasma of a gas that mainly contains hydrogen or helium; and giving an energy to said amorphous silicon film.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: August 23, 2005
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Hideto Ohnuma