Patents by Inventor Naoto Yamade

Naoto Yamade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150108475
    Abstract: To improve the electrical characteristics of a semiconductor device including an oxide semiconductor, and to provide a highly reliable semiconductor device with a small variation in electrical characteristics. The semiconductor device includes a first insulating film, a first barrier film over the first insulating film, a second insulating film over the first barrier film, and a first transistor including a first oxide semiconductor film over the second insulating film. The amount of hydrogen molecules released from the first insulating film at a given temperature higher than or equal to 400° C., which is measured by thermal desorption spectroscopy, is less than or equal to 130% of the amount of released hydrogen molecules at 300° C. The second insulating film includes a region containing oxygen at a higher proportion than oxygen in the stoichiometric composition.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Yoshinori Ando, Hidekazu Miyairi, Naoto Yamade, Asako Higa, Miki Suzuki, Yoshinori Ieda, Yasutaka Suzuki, Kosei Nei, Shunpei Yamazaki
  • Patent number: 8969182
    Abstract: A semiconductor device using an oxide semiconductor is provided with stable electric characteristics to improve the reliability. In a manufacturing process of a transistor including an oxide semiconductor film, an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a first crystalline oxide semiconductor film) is formed; oxygen is added to the oxide semiconductor film to amorphize at least part of the oxide semiconductor film, so that an amorphous oxide semiconductor film containing an excess of oxygen is formed; an aluminum oxide film is formed over the amorphous oxide semiconductor film; and heat treatment is performed thereon to crystallize at least part of the amorphous oxide semiconductor film, so that an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a second crystalline oxide semiconductor film) is formed.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Naoto Yamade, Yuhei Sato, Yutaka Okazaki, Shunpei Yamazaki
  • Patent number: 8952379
    Abstract: Provided is a semiconductor device in which an oxide semiconductor layer is provided; a pair of wiring layers which are provided with the gate electrode layer interposed therebetween are electrically connected to the low-resistance regions; and electrode layers are provided to be in contact with the low-resistance regions, below regions where the wiring layers are formed.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsuo Isobe, Hiromachi Godo, Takehisa Hatano, Sachiaki Tezuka, Suguru Hondo, Naoto Yamade, Junichi Koezuka
  • Patent number: 8951899
    Abstract: To provide a semiconductor device including an oxide semiconductor which is capable of having stable electric characteristics and achieving high reliability, by a dehydration or dehydrogenation treatment performed on a base insulating layer provided in contact with an oxide semiconductor layer, the water and hydrogen contents of the base insulating layer can be decreased, and by an oxygen doping treatment subsequently performed, oxygen which can be eliminated together with the water and hydrogen is supplied to the base insulating layer. By formation of the oxide semiconductor layer in contact with the base insulating layer whose water and hydrogen contents are decreased and whose oxygen content is increased, oxygen can be supplied to the oxide semiconductor layer while entry of the water and hydrogen into the oxide semiconductor layer is suppressed.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory
    Inventors: Naoto Yamade, Junichi Koezuka, Miki Suzuki, Yuichi Sato
  • Publication number: 20140299876
    Abstract: A semiconductor device which is miniaturized and has sufficient electrical characteristics to function as a transistor is provided. In a semiconductor device including a transistor in which a semiconductor layer, a gate insulating layer, and a gate electrode layer are stacked in that order, an oxide semiconductor film which contains at least four kinds of elements of indium, gallium, zinc, and oxygen, and in which the percentage of the indium is twice or more as large as each of the percentage of the gallium and the percentage of the zinc when the composition of the four elements is expressed in atomic percentage is used as the semiconductor layer. In the semiconductor device, the oxide semiconductor film is a film to which oxygen is introduced in the manufacturing process and contains a large amount of oxygen, and an insulating layer including an aluminum oxide film is provided to cover the transistor.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Naoto YAMADE, Junichi KOEZUKA
  • Patent number: 8796681
    Abstract: A semiconductor device which is miniaturized and has sufficient electrical characteristics to function as a transistor is provided. In a semiconductor device including a transistor in which a semiconductor layer, a gate insulating layer, and a gate electrode layer are stacked in that order, an oxide semiconductor film which contains at least four kinds of elements of indium, gallium, zinc, and oxygen, and in which the percentage of the indium is twice or more as large as each of the percentage of the gallium and the percentage of the zinc when the composition of the four elements is expressed in atomic percentage is used as the semiconductor layer. In the semiconductor device, the oxide semiconductor film is a film to which oxygen is introduced in the manufacturing process and contains a large amount of oxygen, and an insulating layer including an aluminum oxide film is provided to cover the transistor.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 5, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Yamade, Junichi Koezuka
  • Patent number: 8772094
    Abstract: A highly reliable semiconductor device that includes a transistor including an oxide semiconductor is provided. In a manufacturing process of a semiconductor device that includes a bottom-gate transistor including an oxide semiconductor, an insulating film which is in contact with an oxide semiconductor film is subjected to dehydration or dehydrogenation treatment by heat treatment and oxygen doping treatment in this order. The insulating film which is in contact with the oxide semiconductor film refers to a gate insulating film provided under the oxide semiconductor film and an insulating film which is provided over the oxide semiconductor film and functions as a protective insulating film. The gate insulating film and/or the insulating film are/is subjected to dehydration or dehydrogenation treatment by heat treatment and oxygen doping treatment in this order.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Yamade, Junichi Koezuka, Shunpei Yamazaki
  • Publication number: 20140186998
    Abstract: A highly reliable semiconductor device which is formed using an oxide semiconductor and has stable electric characteristics is provided. A semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in the stoichiometric composition, and an aluminum oxide film provided over the amorphous oxide semiconductor layer is provided. The amorphous oxide semiconductor layer is formed as follows: oxygen implantation treatment is performed on a crystalline or amorphous oxide semiconductor layer which has been subjected to dehydration or dehydrogenation treatment, and then thermal treatment is performed on the oxide semiconductor layer provided with an aluminum oxide film at a temperature lower than or equal to 450° C.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi KOEZUKA, Naoto YAMADE, Kyoko YOSHIOKA, Yuhei SATO, Mari TERASHIMA
  • Patent number: 8709922
    Abstract: A highly reliable semiconductor device which is formed using an oxide semiconductor and has stable electric characteristics is provided. A semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in the stoichiometric composition, and an aluminum oxide film provided over the amorphous oxide semiconductor layer is provided. The amorphous oxide semiconductor layer is formed as follows: oxygen implantation treatment is performed on a crystalline or amorphous oxide semiconductor layer which has been subjected to dehydration or dehydrogenation treatment, and then thermal treatment is performed on the oxide semiconductor layer provided with an aluminum oxide film at a temperature lower than or equal to 450° C.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: April 29, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Naoto Yamade, Kyoko Yoshioka, Yuhei Sato, Mari Terashima
  • Patent number: 8643008
    Abstract: A semiconductor device which can operate at high speed and consumes a smaller amount of power is provided. In a semiconductor device including transistors each including an oxide semiconductor, the oxygen concentration of the oxide semiconductor film of the transistor having small current at negative gate voltage is different from that of the oxide semiconductor film of the transistor having high field-effect mobility and large on-state current. Typically, the oxygen concentration of the oxide semiconductor film of the transistor having high field-effect mobility and large on-state current is lower than that of the oxide semiconductor film of the transistor having small current at negative gate voltage.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Naoto Yamade, Junichi Koezuka
  • Publication number: 20130069055
    Abstract: Provided is a semiconductor device in which an oxide semiconductor layer is provided; a pair of wiring layers which are provided with the gate electrode layer interposed therebetween are electrically connected to the low-resistance regions; and electrode layers are provided to be in contact with the low-resistance regions, below regions where the wiring layers are formed.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 21, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Atsuo ISOBE, Hiromachi GODO, Takehisa HATANO, Sachiaki TEZUKA, Suguru HONDO, Naoto YAMADE, Junichi KOEZUKA
  • Publication number: 20130056727
    Abstract: A semiconductor device which is miniaturized and has sufficient electrical characteristics to function as a transistor is provided. In a semiconductor device including a transistor in which a semiconductor layer, a gate insulating layer, and a gate electrode layer are stacked in that order, an oxide semiconductor film which contains at least four kinds of elements of indium, gallium, zinc, and oxygen, and in which the percentage of the indium is twice or more as large as each of the percentage of the gallium and the percentage of the zinc when the composition of the four elements is expressed in atomic percentage is used as the semiconductor layer. In the semiconductor device, the oxide semiconductor film is a film to which oxygen is introduced in the manufacturing process and contains a large amount of oxygen, and an insulating layer including an aluminum oxide film is provided to cover the transistor.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 7, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Naoto YAMADE, Junichi KOEZUKA
  • Publication number: 20130020569
    Abstract: A semiconductor device which can operate at high speed and consumes a smaller amount of power is provided. In a semiconductor device including transistors each including an oxide semiconductor, the oxygen concentration of the oxide semiconductor film of the transistor having small current at negative gate voltage is different from that of the oxide semiconductor film of the transistor having high field-effect mobility and large on-state current. Typically, the oxygen concentration of the oxide semiconductor film of the transistor having high field-effect mobility and large on-state current is lower than that of the oxide semiconductor film of the transistor having small current at negative gate voltage.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 24, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Naoto YAMADE, Junichi KOEZUKA
  • Publication number: 20120280234
    Abstract: A highly reliable semiconductor device which is formed using an oxide semiconductor and has stable electric characteristics is provided. A semiconductor device which includes an amorphous oxide semiconductor layer including a region containing oxygen in a proportion higher than that in the stoichiometric composition, and an aluminum oxide film provided over the amorphous oxide semiconductor layer is provided. The amorphous oxide semiconductor layer is formed as follows: oxygen implantation treatment is performed on a crystalline or amorphous oxide semiconductor layer which has been subjected to dehydration or dehydrogenation treatment, and then thermal treatment is performed on the oxide semiconductor layer provided with an aluminum oxide film at a temperature lower than or equal to 450° C.
    Type: Application
    Filed: April 17, 2012
    Publication date: November 8, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junichi KOEZUKA, Naoto YAMADE, Kyoko YOSHIOKA, Yuhei SATO, Mari TERASHIMA
  • Publication number: 20120276694
    Abstract: A semiconductor device using an oxide semiconductor is provided with stable electric characteristics to improve the reliability. In a manufacturing process of a transistor including an oxide semiconductor film, an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a first crystalline oxide semiconductor film) is formed; oxygen is added to the oxide semiconductor film to amorphize at least part of the oxide semiconductor film, so that an amorphous oxide semiconductor film containing an excess of oxygen is formed; an aluminum oxide film is formed over the amorphous oxide semiconductor film; and heat treatment is performed thereon to crystallize at least part of the amorphous oxide semiconductor film, so that an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a second crystalline oxide semiconductor film) is formed.
    Type: Application
    Filed: April 23, 2012
    Publication date: November 1, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junichi KOEZUKA, Naoto YAMADE, Yuhei SATO, Yutaka OKAZAKI, Shunpei YAMAZAKI
  • Patent number: 8164099
    Abstract: A display device with improved reliability and a manufacturing method of the same with improved yield. A display device according to the invention comprises a display area including a first electrode, an insulating layer covering an edge of the first electrode, a layer containing an organic compound, which is formed on the first electrode, and a second electrode. The first electrode and the insulating layer are doped with an impurity element of one conductivity.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: April 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Osamu Nakamura, Aki Yamamiti, Naoto Yamade
  • Patent number: 7980198
    Abstract: It is an object of the present invention to provide a doping apparatus, a doping method, and a method for fabricating a thin film transistor that can carry out doping to the carrier concentration which is optimum for obtaining the desired electric characteristic non-destructively and in an easy manner. In accordance with the present invention, an electric characteristic of a semiconductor element (threshold voltage in a transistor and the like) is correctly and precisely monitored by using a contact angle, and is controlled by controlling a doping method. In addition, the present invention can be momentarily acquired information by in-situ monitoring the characteristic and can be fed back without a time lag.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: July 19, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Naoto Yamade
  • Publication number: 20100201655
    Abstract: A display device with improved reliability and a manufacturing method of the same with improved yield. A display device according to the invention comprises a display area including a first electrode, an insulating layer covering an edge of the first electrode, a layer containing an organic compound, which is formed on the first electrode, and a second electrode. The first electrode and the insulating layer are doped with an impurity element of one conductivity.
    Type: Application
    Filed: April 16, 2010
    Publication date: August 12, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Osamu NAKAMURA, Aki YAMAMITI, Naoto YAMADE
  • Publication number: 20100197049
    Abstract: It is an object of the present invention to provide a doping apparatus, a doping method, and a method for fabricating a thin film transistor that can carry out doping to the carrier concentration which is optimum for obtaining the desired electric characteristic non-destructively and in an easy manner. In accordance with the present invention, an electric characteristic of a semiconductor element (threshold voltage in a transistor and the like) is correctly and precisely monitored by using a contact angle, and is controlled by controlling a doping method. In addition, the present invention can be momentarily acquired information by in-situ monitoring the characteristic and can be fed back without a time lag.
    Type: Application
    Filed: April 7, 2010
    Publication date: August 5, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junichi KOEZUKA, Naoto YAMADE
  • Patent number: 7718463
    Abstract: A display device with improved reliability and a manufacturing method of the same with improved yield. A display device according to the invention comprises a display area including a first electrode, an insulating layer covering an edge of the first electrode, a layer containing an organic compound, which is formed on the first electrode, and a second electrode. The first electrode and the insulating layer are doped with an impurity element of one conductivity.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: May 18, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Osamu Nakamura, Aki Yamamiti, Naoto Yamade