Patents by Inventor Naoya Hayamizu

Naoya Hayamizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150004497
    Abstract: According to one embodiment, a secondary battery electrode includes a current collector, and a layer. The layer is provided on the current collector. The layer includes a plurality of active material bodies and a fiber provided between adjacent active material bodies out of the active material bodies, and connects the adjacent active material bodies to each other.
    Type: Application
    Filed: March 10, 2014
    Publication date: January 1, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Ikuo UEMATSU, Naoaki Sakurai, Naoya Hayamizu
  • Publication number: 20140061023
    Abstract: According to one embodiment, a treatment apparatus includes a treatment liquid storage unit and a supply unit. The treatment liquid storage unit is configured to store a treatment liquid containing an acid and an oxidizing substance. The supply unit is configured to supply the treatment liquid stored in the treatment liquid storage unit to a fluid extracted via a production well.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 6, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideaki HIRABAYASHI, Naoaki Sakurai, Naoya Hayamizu
  • Patent number: 8519371
    Abstract: According to one embodiment, a nonvolatile memory device includes a substrate, a first electrode, a second electrode, and a memory. The first electrode is provided on the substrate. The second electrode crosses on the first electrode. The memory portion is provided between the first electrode and the second electrode. At least one of an area of a first memory portion surface of the memory portion opposed to the first electrode and an area of a second memory portion surface of the memory portion opposed to the second electrode is smaller than an area of a cross surface of the first electrode and the second electrode opposed to each other by the crossing.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: August 27, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Fukumizu, Naoya Hayamizu, Makiko Tange
  • Patent number: 8517035
    Abstract: A processing apparatus includes: a processing chamber configured to contain a workpiece; a first nozzle provided in the processing chamber, the first nozzle discharging vapor onto the workpiece; a wall enclosing the processing chamber; a fluid channel provided inside the wall; a fluid inlet; and a fluid outlet. The fluid inlet is provided in communication with the fluid channel. The fluid outlet is provided in communication with the fluid channel, where a fluid flows into the fluid inlet, passes through the fluid channel, and flows out of the fluid outlet. A processing method for processing a workpiece moving in a processing chamber, the processing method includes: discharging a vapor from a first nozzle toward the workpiece while flowing a fluid through a fluid channel which is provided inside a wall, the wall enclosing the processing chamber.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: August 27, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takahiko Wakatsuki, Naoya Hayamizu, Hiroshi Fujita, Akiko Saito, Toshihide Hayashi, Yukinobu Nishibe
  • Patent number: 8454754
    Abstract: A cleaning method includes: producing an oxidizing solution by electrolysis of sulfuric acid; and cleaning a workpiece with the oxidizing solution. The oxidizing solution is heated by heat of mixing to clean the workpiece. A method for manufacturing an electronic device includes: producing a workpiece; producing an oxidizing solution by electrolysis of sulfuric acid; and cleaning the workpiece with the oxidizing solution. The oxidizing solution is heated by heat of mixing to clean the workpiece.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: June 4, 2013
    Assignees: Shibaura Mechatronics Corporation, Chlorine Engineers Corp. Ltd., Kabushiki Kaisha Toshiba
    Inventors: Yukihiro Shibata, Naoya Hayamizu, Masaaki Kato, Nobuo Kobayashi
  • Patent number: 8303797
    Abstract: A cleaning system includes: a sulfuric acid electrolytic portion configured to electrolyze a sulfuric acid solution to generate an oxidizing substance in an anode chamber, a concentrated sulfuric acid supply portion configured to supply a concentrated sulfuric acid solution to the anode chamber, and a cleaning treatment portion configured to carry out cleaning treatment of an object to be cleaned using an oxidizing solution comprising the oxidizing substance. The sulfuric acid electrolytic portion has an anode, a cathode, a diaphragm which is provided between the anode and the cathode, the anode chamber which is demarcated between the anode and the diaphragm and a cathode chamber which is demarcated between the cathode and the diaphragm.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoya Hayamizu, Yukihiro Shibata, Masaaki Kato, Hiroyuki Fukui
  • Patent number: 8236161
    Abstract: An apparatus for electrolyzing sulfuric acid, the apparatus comprising an electrolytic cell comprising a cathode chamber having a cathode and an anode chamber having an anode, the cathode chamber and the anode chamber being separated by a diaphragm, a sulfuric acid tank configured to store the sulfuric acid, a supply pipe connecting the sulfuric acid tank to an inlet port of the anode chamber, a connection pipe connecting an outlet port of the cathode chamber to the inlet port of the anode chamber, a first supply pump provided on the supply pipe and configured to supply the sulfuric acid from the sulfuric acid tank to the cathode chamber through the supply pipe, and a drain pipe connected to an outlet port of the anode chamber and configured to supply to a solution tank a solution containing an oxidizing agent generated by electrolysis in the anode chamber.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: August 7, 2012
    Assignees: Shibaura Mechatronics Corporation, Kabushiki Kaisha Toshiba, Chlorine Engineers Corp., Ltd.
    Inventors: Nobuo Kobayashi, Yukihiro Shibata, Naoya Hayamizu, Masaaki Kato
  • Patent number: 8211287
    Abstract: Sulfuric acid electrolysis process wherein; a temperature of electrolyte containing sulfuric acid to be supplied to an anode compartment and a cathode compartment is controlled to 30 degree Celsius or more; a flow rate F1 (L/min.) of the electrolyte containing sulfuric acid to be supplied to said anode compartment is controlled to 1.5 times or more (F1/Fa?1.5) a flow rate Fa (L/min.) of gas formed on an anode side as calculated from Equation (1) shown below and a flow rate F2(L/min.) of said electrolyte containing sulfuric acid to be supplied to said cathode compartment is controlled to 1.5 times or more (F2/Fc?1.5) a flow rate Fe (L/min.) of gas formed on a cathode side as calculated from Equation (2) shown below. Fa=(I×S×R×T)/(4×Faraday constant)??Equation (1) Fe=(I×S×R×T)/(2×Faraday constant)??Equation (2) I: Electrolytic current (A) S: Time: 60 second (Fixed) R: Gas constant (0.082 1·atm/K/mol) K: Absolute temperature (273.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: July 3, 2012
    Assignees: Chlorine Engineers Corp., Ltd., Toshiba Corp., Ltd., Shibaura Mechatronics Corp., Ltd.
    Inventors: Masaaki Kato, Yusuke Ogawa, Hiroki Domon, Naoya Hayamizu, Makiko Tange, Yoshiaki Kurokawa, Nobuo Kobayashi
  • Patent number: 8187449
    Abstract: The cleaning method by electrolytic sulfuric acid and the manufacturing method of semiconductor device comprising: the process in which the first sulfuric acid solution is supplied from outside to the sulfuric acid electrolytic cell to form the first electrolytic sulfuric acid containing oxidizing agent in the sulfuric acid electrolytic cell; the process in which the second sulfuric acid solution, which is higher in concentration than said the first sulfuric acid solution previously supplied, is supplied from outside to said sulfuric acid electrolytic cell; said the second sulfuric acid solution and the first electrolytic sulfuric acid are mixed in said sulfuric acid electrolytic cell; and electrolysis is performed to form the cleaning solution comprising the second electrolytic sulfuric acid containing sulfuric acid and oxidation agent in said sulfuric acid electrolytic cell and the process in which cleaning treatment is performed for the cleaning object with said cleaning solution.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: May 29, 2012
    Assignees: Chlorine Engineers Corp., Ltd., Toshiba Corp., Ltd., Shibaura Mechatronics Corp., Ltd.
    Inventors: Hiroki Domon, Yusuke Ogawa, Masaaki Kato, Takamichi Kishi, Naoya Hayamizu, Makiko Tange, Yoshiaki Kurokawa, Nobuo Kobayashi
  • Patent number: 8183163
    Abstract: An etching liquid used for selectively etching silicon nitride, the etching liquid includes: water; a first liquid that can be mixed with the water to produce a mixture liquid having a boiling point of 150° C. or more; and a second liquid capable of producing protons (H+). Alternatively, an etching liquid includes: water; phosphoric acid; and sulfuric acid, the phosphoric acid and the sulfuric acid having a volume ratio of 300:32 to 150:300.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuya Eguchi, Naoya Hayamizu, Hiroyuki Fukui
  • Patent number: 8153488
    Abstract: Manufacturing a nonvolatile storage device including: stacking a first electrode film forming a first electrode and a first storage unit film forming a first storage unit on a substrate; processing the first electrode film and the first storage unit film into a strip shape; burying a sacrifice layer between the processed first electrode films and between the processed first storage unit films; forming a second electrode film forming a second electrode on the first storage unit film and the sacrifice layer; forming a mask layer on the second electrode film; processing the second electrode film into a strip shape using the mask layer; removing a portion of the first storage unit film exposed from the sacrifice layer using the mask layer processing the first storage unit film into a columnar shape, removing the sacrifice layer exposing the first storage unit film; and removing the exposed first storage unit film.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhito Nishitani, Eiji Ito, Machiko Tsukiji, Hiroyuki Fukumizu, Naoya Hayamizu, Katsuhiro Sato
  • Patent number: 8141567
    Abstract: A processing apparatus includes: a tank configured to store water; vapor generating unit configured to turn the water supplied from the tank into vapor; a processing chamber in which vapor supplied from the vapor generating unit is used to remove residues from a workpiece; cooling unit; and filtering unit. The cooling unit cools waste liquid ejected from the processing chamber. The filtering unit is provided between the cooling unit and the tank, and the filtering unit filters the waste liquid cooled in the cooling unit. A processing method includes: supplying vapor into a processing chamber; removing residues from a workpiece using the vapor; cooling waste liquid containing the removed residues to precipitate the residues as solids; and filtering the waste liquid containing the precipitates.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takahiko Wakatsuki, Naoya Hayamizu, Hiroshi Fujita, Akiko Saito, Toshihide Hayashi, Yukinobu Nishibe, Tsutomu Makino
  • Patent number: 8137513
    Abstract: In a sulfuric acid electrolytic cell to electrolyze sulfuric acid supplied to an anode compartment and a cathode compartment comprising a diaphragm, said anode compartment and said cathode compartment separated by said diaphragm, a cathode provided in said cathode compartment and a conductive diamond anode provided in said anode compartment, as said conductive diamond anode, a conductive diamond film is formed on the surface of said conductive substrate, the rear face of said conductive substrate is pasted, with conductive paste, on an current collector comprising a rigid body with size equal to, or larger than, said conductive substrate, an anode compartment frame constituting said anode compartment is contacted via gasket with the periphery on the side of the conductive diamond film of said diamond anode, said diaphragm is contacted with the front face of said anode compartment, further, with the front face of said diaphragm, the cathode compartment frame constituting said cathode compartment, a gasket, and
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 20, 2012
    Assignees: Chlorine Engineers Corp., Ltd., Toshiba Corp., Ltd., Shibaura Mechatronics Corp., Ltd.
    Inventors: Masaaki Kato, Yoshiyuki Seya, Naoya Hayamizu, Makiko Tange, Yoshiaki Kurokawa, Nobuo Kobayashi
  • Patent number: 8105728
    Abstract: A polyelectrolyte material includes as a main chain: a benzene ring; an ether; and a carbonyl group. A part of the benzene ring is sulfonated. A method for manufacturing a polyelectrolyte material includes: synthesizing disulfonyl difluorobenzophenone; and polymerizing the disulfonyl difluorobenzophenone, 4,4?-difluorobenzophenone, and phenolphthalein with a crown ether as a catalyst. The synthesizing is performed by reacting 4,4?-difluorobenzophenone with fuming sulfuric acid, performing salting-out the reaction product, and recrystallizing the salting-out product.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: January 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoya Hayamizu, Yukihiro Shibata, Akiko Saito, Jun Momma, Hideo Oota
  • Patent number: 8021565
    Abstract: A surface treatment method includes: removing a fluorocarbon-containing reaction product from a surface of a workpiece by oxygen gas plasma processing. The workpiece includes a plurality of layers. The fluorocarbon-containing reaction product is deposited by successively etching the layers of the workpiece. The method further includes after removing the reaction product, removing an oxide-containing reaction product from the surface of the workpiece using hydrogen fluoride gas.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: September 20, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuaki Aoki, Naoya Hayamizu, Kei Hattori, Yukihiro Oka, Hidemi Kanetaka, Makoto Hasegawa
  • Publication number: 20110223333
    Abstract: According to one embodiment, a method of treating catalyst for nanocarbon production comprises, bringing a surface of a catalytic material into contact with a chemical, the catalytic material containing a metallic material and being used to produce nanocarbon, corroding the surface of the catalytic material, and drying the surface of the catalytic material.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 15, 2011
    Inventors: Masashi Yamage, Naoya Hayamizu
  • Publication number: 20110143549
    Abstract: In one embodiment, an etching method is disclosed. The method can include producing an oxidizing substance by electrolyzing a sulfuric acid solution, and producing an etching solution having a prescribed oxidizing species concentration by controlling a produced amount of the produced oxidizing substance. The method can include supplying the produced etching solution to a surface of a workpiece.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 16, 2011
    Applicants: KABUSHIKI KAISHA TOSHIBA, SHIBAURA MECHATRONICS CORPORATION, CHLORINE ENGINEERS CORP. LTD.
    Inventors: Makiko TANGE, Naoya Hayamizu, Nobuyoshi Sato, Yuri Yonekura, Hideaki Hirabayashi, Yoshiaki Kurokawa, Nobuo Kobayashi, Masaaki Kato, Hiroki Domon
  • Publication number: 20110073489
    Abstract: According to embodiments, a cleaning liquid includes an oxidizing substance and hydrofluoric acid and exhibiting acidity. A cleaning method is disclosed. The method includes producing an oxidizing solution including an oxidizing substance by one selected from electrolyzing a sulfuric acid solution, electrolyzing hydrofluoric acid added to a sulfuric acid solution, and mixing a sulfuric acid solution with aqueous hydrogen peroxide. The method includes supplying the oxidizing solution and hydrofluoric acid to a surface of an object to be cleaned.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 31, 2011
    Applicants: KABUSHIKI KAISHA TOSHIBA, SHIBAURA MECHATRONICS CORPORATION, CHLORINE ENGINEERS CORP. LTD.
    Inventors: Naoya Hayamizu, Makiko Tange, Yoshiaki Kurokawa, Nobuo Kobayashi, Masaaki Kato, Yusuke Ogawa, Hiroki Domon
  • Publication number: 20110073490
    Abstract: According to one embodiment, a cleaning method is disclosed. The method can produce an oxidizing solution including an oxidizing substance by electrolyzing a dilute sulfuric acid solution. In addition, the method can supply a highly concentrated inorganic acid solution individually, sequentially, or substantially simultaneously with the oxidizing solution to a surface of an object to be cleaned.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 31, 2011
    Applicants: KABUSHIKI KAISHA TOSHIBA, CHLORINE ENGINEERS CORP. LTD., SHIBAURA MECHATRONICS CORPORATION
    Inventors: Naoya Hayamizu, Makiko Tange, Masaaki Kato, Hiroki Domon, Yusuke Ogawa, Yoshiaki Kurokawa, Nobuo Kobayashi
  • Publication number: 20110037045
    Abstract: According to one embodiment, a nonvolatile memory device includes a substrate, a first electrode, a second electrode, and a memory. The first electrode is provided on the substrate. The second electrode crosses on the first electrode. The memory portion is provided between the first electrode and the second electrode. At least one of an area of a first memory portion surface of the memory portion opposed to the first electrode and an area of a second memory portion surface of the memory portion opposed to the second electrode is smaller than an area of a cross surface of the first electrode and the second electrode opposed to each other by the crossing.
    Type: Application
    Filed: September 7, 2010
    Publication date: February 17, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Fukumizu, Naoya Hayamizu, Makiko Tange