Patents by Inventor Narayan Srinivasa
Narayan Srinivasa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250061534Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.Type: ApplicationFiled: August 29, 2024Publication date: February 20, 2025Applicant: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 12198221Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.Type: GrantFiled: February 8, 2024Date of Patent: January 14, 2025Assignee: Intel CorporationInventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
-
Publication number: 20250005703Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core including mixed-precision execution circuitry to execute one or more of the mixed-precision instructions to perform a mixed-precision dot-product operation comprising to perform a set of multiply and accumulate operations.Type: ApplicationFiled: July 15, 2024Publication date: January 2, 2025Applicant: Intel CorporationInventors: Abhishek R. Appu, Altug Koker, Linda L. Hurd, Dukhwan Kim, Mike B. Macpherson, John C. Weast, Feng Chen, Farshad Akhbari, Narayan Srinivasa, Nadathur Rajagopalan Satish, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman
-
Patent number: 12112397Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.Type: GrantFiled: June 14, 2023Date of Patent: October 8, 2024Assignee: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 12056788Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core including mixed-precision execution circuitry to execute one or more of the mixed-precision instructions to perform a mixed-precision dot-product operation comprising to perform a set of multiply and accumulate operations.Type: GrantFiled: March 1, 2022Date of Patent: August 6, 2024Assignee: Intel CorporationInventors: Abhishek R. Appu, Altug Koker, Linda L. Hurd, Dukhwan Kim, Mike B. Macpherson, John C. Weast, Feng Chen, Farshad Akhbari, Narayan Srinivasa, Nadathur Rajagopalan Satish, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman
-
Publication number: 20240257294Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.Type: ApplicationFiled: February 8, 2024Publication date: August 1, 2024Applicant: Intel CorporationInventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
-
Patent number: 11990932Abstract: A clock buffer or driver is gated pending reception of verifiable crypto keys. These clock buffer or divers remain gated, thus disabling a processor from any meaningful function, till crypto keys are decoded, verified, and applied to the clock buffer or driver. A low frequency pseudorandom frequency hopping time sequence is generated and used for randomizing spread-spectrum to modulate a reference clock (or output clock) of a frequency synthesizer. This hopping time sequence holds the key to unlocking the crypto keys. The PWM modulated crypto keys are carried by the hopping time sequence. To decode the PWM modulated crypto keys, the hopping time sequence is used. The reference clock which is modulated with crypto keys in the spread-spectrum is sent to a decoder (in a processor) along with the hopping time sequence. The crypto keys are decoded and then used to un-gate the clock buffer.Type: GrantFiled: December 23, 2020Date of Patent: May 21, 2024Assignee: INTEL CORPORATIONInventors: Mohamed A. Abdelmoneum, Nasser Kurd, Thripthi Hegde, Narayan Srinivasa, Peter Sagazio
-
Publication number: 20240112460Abstract: Apparatuses, methods, and articles of manufacture are disclosed. An example apparatus includes processor circuitry to assign a location value hyperdimensional vector (HDV) to a location in an image of a first patch of one or more pixels, assign at least a first channel HDV to the first patch, determine at least one pixel intensity value HDV for each of the one or more pixels in the first patch, bind together each of the pixel intensity value HDVs into at least one patch intensity value HDV, bind together the at least first channel HDV and the at least one patch intensity value HDV to produce a patch consensus intensity HDV, and generate a first hyperdimensional representation patch value HDV of the first patch by binding together at least a combination of the patch consensus intensity HDV and the location value HDV.Type: ApplicationFiled: September 29, 2023Publication date: April 4, 2024Inventor: Narayan Srinivasa
-
Patent number: 11922535Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.Type: GrantFiled: February 13, 2023Date of Patent: March 5, 2024Assignee: Intel CorporationInventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
-
Publication number: 20240054331Abstract: A spiking neuromorphic network may be used to solve an optimization problem. The network may include primary neurons. The state of a primary neuron may be a value of a corresponding variable of the optimization problem. The primary neurons may update their states and change values of the variables. The network may also include a cost neuron that can compute, using a cost function, costs based on values of the variables sent to the cost neuron in the form of spikes from the primary neurons. The network may also include a minima neuron for determining the lowest cost and an integrator neuron for tracking how many computational steps the primary neurons have performed. The minima neuron or integrator neuron may determine whether convergence is achieved. After the convergence is achieved, the minima neuron or integrator neuron may instruct the primary neurons to stop computing new values of the variables.Type: ApplicationFiled: October 18, 2023Publication date: February 15, 2024Applicant: Intel CorporationInventor: Narayan Srinivasa
-
Publication number: 20240004829Abstract: An integrated circuit (IC) package apparatus is disclosed. The IC package includes one or more processing units and a bridge, mounted below the one or more processing unit, including one or more arithmetic logic units (ALUs) to perform atomic operations.Type: ApplicationFiled: July 12, 2023Publication date: January 4, 2024Applicant: Intel CorporationInventors: Altug Koker, Farshad Akhbari, Feng Chen, Dukhwan Kim, Narayan Srinivasa, Nadathur Rajagopalan Satish, Liwei Ma, Jeremy Bottleson, Eriko Nurvitadhi, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu
-
Publication number: 20240005136Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: July 12, 2023Publication date: January 4, 2024Applicant: Intel CorporationInventors: Kamal Sinha, Balaji Vembu, Eriko Nurvitadhi, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Farshad Akhbari, Narayan Srinivasa, Feng Chen, Dukhwan Kim, Nadathur Rajagopalan Satish, John C. Weast, Mike B. MacPherson, Linda L. Hurd, Vasanth Ranganathan, Sanjeev Jahagirdar
-
Patent number: 11854253Abstract: Apparatuses, methods, and articles of manufacture are disclosed. An example apparatus includes processor circuitry to assign a location value hyperdimensional vector (HDV) to a location in an image of a first patch of one or more pixels, assign at least a first channel HDV to the first patch, determine at least one pixel intensity value HDV for each of the one or more pixels in the first patch, bind together each of the pixel intensity value HDVs into at least one patch intensity value HDV, bind together the at least first channel HDV and the at least one patch intensity value HDV to produce a patch consensus intensity HDV, and generate a first hyperdimensional representation patch value HDV of the first patch by binding together at least a combination of the patch consensus intensity HDV and the location value HDV.Type: GrantFiled: June 26, 2021Date of Patent: December 26, 2023Assignee: Intel CorporationInventor: Narayan Srinivasa
-
Publication number: 20230394616Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.Type: ApplicationFiled: June 14, 2023Publication date: December 7, 2023Applicant: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 11748606Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.Type: GrantFiled: May 11, 2021Date of Patent: September 5, 2023Assignee: INTEL CORPORATIONInventors: Kamal Sinha, Balaji Vembu, Eriko Nurvitadhi, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Farshad Akhbari, Narayan Srinivasa, Feng Chen, Dukhwan Kim, Nadathur Rajagopalan Satish, John C. Weast, Mike B. MacPherson, Linda L. Hurd, Vasanth Ranganathan, Sanjeev S. Jahagirdar
-
Patent number: 11748298Abstract: An integrated circuit (IC) package apparatus is disclosed. The IC package includes one or more processing units and a bridge, mounted below the one or more processing unit, including one or more arithmetic logic units (ALUs) to perform atomic operations.Type: GrantFiled: May 27, 2022Date of Patent: September 5, 2023Assignee: INTEL CORPORATIONInventors: Altug Koker, Farshad Akhbari, Feng Chen, Dukhwan Kim, Narayan Srinivasa, Nadathur Rajagopalan Satish, Liwei Ma, Jeremy Bottleson, Eriko Nurvitadhi, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu
-
Publication number: 20230260072Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.Type: ApplicationFiled: February 13, 2023Publication date: August 17, 2023Applicant: Intel CorporationInventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
-
Patent number: 11727527Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex compute operation.Type: GrantFiled: December 3, 2021Date of Patent: August 15, 2023Assignee: Intel CorporationInventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
-
Patent number: 11663449Abstract: Techniques and mechanisms for providing a logical state machine with a spiking neural network which includes multiple sets of nodes. Each of the multiple sets of nodes is to implement a different respective state, and each of the multiple spike trains is provided to respective nodes of each of the multiple sets of nodes. A given state of the logical state machine is implemented by configuring respective activation modes of each node of the corresponding set of nodes. The activation mode of a given node enables that node to signal, responsive to its corresponding spike train, that a respective state transition of the logical state machine is to be performed. In another embodiment, the multiple spike trains each represent a different respective character in a system used by data evaluated with the spiking neural network.Type: GrantFiled: December 15, 2017Date of Patent: May 30, 2023Assignee: Intel CorporationInventors: Arnab Paul, Narayan Srinivasa
-
Patent number: 11651199Abstract: Techniques and mechanisms for processing differential video data with a spiking neural network to provide action recognition functionality. In an embodiment, the spiking neural network is coupled to receive and process a first one or more spike trains which represent an encoded version of a sequence comprising frames of differential video data. In turn, the frames of differential video data are each based on a difference between a respective two frames of raw video data. Based on the processing of the first one or more spike trains, the spiking neural network may output a second one or more spike trains. In another embodiment, the second one or more spike trains are provided to train the spiked neural network to recognize an activity type, or to classify a video sequence as including a representation of an instance of the activity type.Type: GrantFiled: December 19, 2017Date of Patent: May 16, 2023Assignee: Intel CorporationInventor: Narayan Srinivasa