Patents by Inventor Narayan Srinivasa

Narayan Srinivasa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11636318
    Abstract: Techniques and mechanisms for servicing a search query using a spiking neural network. In an embodiment, a spiking neural network receives an indication of a first context of the search query, wherein a set of nodes of the spiking neural network each correspond to a respective entry of a repository. One or more nodes of the set of nodes are each excited to provide a respective cyclical response based on the first context, wherein a first cyclical response is by a first node. Due at least in part to a coupling of the excited nodes, a perturbance signal, based on a second context of the search query, results in a change of the first resonance response relative to one or more other resonance responses. In another embodiment, data corresponding to the first node is selected, based on the change, as an at least partial result of the search query.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: April 25, 2023
    Assignee: Intel Corporation
    Inventors: Arnab Paul, Narayan Srinivasa
  • Patent number: 11631198
    Abstract: An apparatus to facilitate compute compression is disclosed. The apparatus includes a graphics processing unit including mapping logic to map a first block of integer pixel data to a compression block and compression logic to compress the compression block.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: April 18, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek Appu, Altug Koker, Joydeep Ray, Balaji Vembu, Prasoonkumar Surti, Kamal Sinha, Nadathur Rajagopalan Satish, Narayan Srinivasa, Feng Chen, Dukhwan Kim, Farshad Akhbari
  • Patent number: 11609856
    Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: March 21, 2023
    Assignee: INTEL CORPORATION
    Inventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
  • Patent number: 11592817
    Abstract: A mechanism is described for facilitating storage management for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting one or more components associated with machine learning, where the one or more components include memory and a processor coupled to the memory, and where the processor includes a graphics processor. The method may further include allocating a storage portion of the memory and a hardware portion of the processor to a machine learning training set, where the storage and hardware portions are precise for implementation and processing of the training set.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: February 28, 2023
    Assignee: INTEL CORPORATION
    Inventors: Abhishek R. Appu, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Prasoonkumar Surti, Chandrasekaran Sakthivel, Altug Koker, Farshad Akhbari, Feng Chen, Dukhwan Kim, Narayan Srinivasa, Nadathur Rajagopalan Satish, Kamal Sinha, Joydeep Ray, Balaji Vembu, Mike B. Macpherson, Linda L. Hurd, Sanjeev Jahagirdar, Vasanth Ranganathan
  • Patent number: 11593910
    Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Patent number: 11568241
    Abstract: Techniques and mechanisms for determining the value of a weight associated with a synapse of a spiking neural network. In an embodiment, a first spike train and a second spike train are output, respectively, by a first node and a second node of the spiking neural network, wherein the synapse is coupled between said nodes. The weight is applied to signaling communicated via the synapse. A value of the weight is updated based on a product of a first value and a second value, wherein the first value is based on a first rate of spiking by the first spike train, and the second value is based on a second rate of spiking by the second spike train. In another embodiment, the weight is updated based on a product of a derivative of the first rate of spiking and a derivative of the second rate of spiking.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: January 31, 2023
    Assignee: Intel Corporation
    Inventors: Arnab Paul, Narayan Srinivasa
  • Publication number: 20230027203
    Abstract: An integrated circuit (IC) package apparatus is disclosed. The IC package includes one or more processing units and a bridge, mounted below the one or more processing unit, including one or more arithmetic logic units (ALUs) to perform atomic operations.
    Type: Application
    Filed: May 27, 2022
    Publication date: January 26, 2023
    Applicant: Intel Corporation
    Inventors: Altug Koker, Farshad Akhbari, Feng Chen, Dukhwan Kim, Narayan Srinivasa, Nadathur Rajagopalan Satish, Liwei Ma, Jeremy Bottleson, Eriko Nurvitadhi, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu
  • Patent number: 11562461
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes one or more processing units to provide a first set of shader operations associated with a shader stage of a graphics pipeline, a scheduler to schedule shader threads for processing, and a field-programmable gate array (FPGA) dynamically configured to provide a second set of shader operations associated with the shader stage of the graphics pipeline.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: January 24, 2023
    Assignee: Intel Corporation
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Patent number: 11544564
    Abstract: Techniques and mechanisms for performing a Bayesian inference with a spiking neural network. In an embodiment, a parent node of the spiking neural network receives a first bias signal which is periodic. The parent node communicates a likelihood signal to a child node, wherein the parent node and the child node correspond to a first condition and a second condition, respectively. Based on a phase change which is applied to the first bias signal, the likelihood signal indicates a probability of the first condition. The child node also receives a signal which indicates an instance of the second condition. Based on the indication and a second bias signal, the child node signals to the first node that an adjustment is to be made to the phase change applied to the first bias signal. After the adjustment, the likelihood signal indicates an updated probability of the first condition.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: January 3, 2023
    Assignee: Intel Corporation
    Inventors: Arnab Paul, Narayan Srinivasa
  • Patent number: 11501143
    Abstract: A reconfigurable neural circuit includes an array of processing nodes. Each processing node includes a single physical neuron circuit having only one input and an output, a single physical synapse circuit having a presynaptic input, and a single physical output coupled to the input of the neuron circuit, a weight memory for storing N synaptic conductance value or weights having an output coupled to the single physical synapse circuit, a single physical spike timing dependent plasticity (STDP) circuit having an output coupled to the weight memory, a first input coupled to the output of the neuron circuit, and a second input coupled to the presynaptic input, and interconnect circuitry connected to the presynaptic input and connected to the output of the single physical neuron circuit. The synapse circuit and the STDP circuit are each time multiplexed circuits. The interconnect circuitry in each respective processing node is coupled to the interconnect circuitry in each other processing node.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: November 15, 2022
    Assignee: HRL LABORATORIES, LLC
    Inventors: Jose Cruz-Albrecht, Timothy Derosier, Narayan Srinivasa
  • Publication number: 20220335562
    Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
    Type: Application
    Filed: May 11, 2022
    Publication date: October 20, 2022
    Applicant: Intel Corporation
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Publication number: 20220278696
    Abstract: Apparatus and method for neural network learning to detect and correct quantum errors. For example, one embodiment of an apparatus comprises. For example, one embodiment of an apparatus comprises: a quantum processor comprising one or more data quantum bits (qbits) and one or more ancilla qbits; an error decoder to decode a state of at least one of the ancilla qbits to generate an error syndrome related to one or more qbit errors; a neural network to evaluate the error syndrome and to either identify a known corrective response for correcting the error or to perform unsupervised learning to identify a corrective response to the error syndrome.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Inventors: JUSTIN HOGABOAM, NARAYAN SRINIVASA
  • Publication number: 20220261948
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core including mixed-precision execution circuitry to execute one or more of the mixed-precision instructions to perform a mixed-precision dot-product operation comprising to perform a set of multiply and accumulate operations.
    Type: Application
    Filed: March 1, 2022
    Publication date: August 18, 2022
    Applicant: Intel Corporation
    Inventors: Abhishek R. Appu, Altug Koker, Linda L. Hurd, Dukhwan Kim, Mike B. Macpherson, John C. Weast, Feng Chen, Farshad Akhbari, Narayan Srinivasa, Nadathur Rajagopalan Satish, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman
  • Patent number: 11403479
    Abstract: Techniques and mechanisms to facilitate a data classification functionality by communicating feedback signals with a spiked neural network. In an embodiment, input signaling, provided to the spiking neural network, results in one or more output spike trains which are indicative of that the input signaling corresponds to a particular data type. Based on the one or more output spike trains, feedback signals are variously communicated each to a respective node of the spiking neural network. The feedback signals variously control signal response characteristics of the nodes. Subsequent output signaling by the spiking neural network, in further response the input signaling, is improved based on the feedback control of nodes' signal responses. In another embodiment, the feedback signals are used to adjust synaptic weight values during training of the spiking neural network.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Yongqiang Cao, Narayan Srinivasa
  • Patent number: 11393211
    Abstract: A mechanism is described for facilitating person tracking and data security in machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, by a camera associated with one or more trackers, a person within a physical vicinity, where detecting includes capturing one or more images the person. The method may further include tracking, by the one or more trackers, the person based on the one or more images of the person, where tracking includes collect tracking data relating to the person. The method may further include selecting a tracker of the one or more trackers as a preferred tracker based on the tracking data.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: July 19, 2022
    Assignee: Intel Corporation
    Inventors: Mayuresh M. Varerkar, Barnan Das, Narayan Biswal, Stanley J. Baran, Gokcen Cilingir, Nilesh V. Shah, Archie Sharma, Sherine Abdelhak, Sachin Godse, Farshad Akhbari, Narayan Srinivasa, Altug Koker, Nadathur Rajagopalan Satish, Dukhwan Kim, Feng Chen, Abhishek R. Appu, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 11379235
    Abstract: A mechanism is described for facilitating intelligent dispatching and vectorizing at autonomous machines. A method of embodiments, as described herein, includes detecting a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a graphics processor. The method may further include determining a first set of threads of the plurality of threads that are similar to each other or have adjacent surfaces, and physically clustering the first set of threads close together using a first set of adjacent compute blocks.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: July 5, 2022
    Assignee: Intel Corporation
    Inventors: Feng Chen, Narayan Srinivasa, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Joydeep Ray, Nicolas C. Galoppo Von Borries, Prasoonkumar Surti, Ben J. Ashbaugh, Sanjeev Jahagirdar, Vasanth Ranganathan
  • Patent number: 11374594
    Abstract: Apparatus and method for neural network learning to detect and correct quantum errors. For example, one embodiment of an apparatus comprises. For example, one embodiment of an apparatus comprises: a quantum processor comprising one or more data quantum bits (qbits) and one or more ancilla qbits; an error decoder to decode a state of at least one of the ancilla qbits to generate an error syndrome related to one or more qbit errors; a neural network to evaluate the error syndrome and to either identify a known corrective response for correcting the error or to perform unsupervised learning to identify a corrective response to the error syndrome.
    Type: Grant
    Filed: May 5, 2018
    Date of Patent: June 28, 2022
    Assignee: INTEL CORPORATION
    Inventors: Justin Hogaboam, Narayan Srinivasa
  • Publication number: 20220200655
    Abstract: A clock buffer or driver is gated pending reception of verifiable crypto keys. These clock buffer or divers remain gated, thus disabling a processor from any meaningful function, till crypto keys are decoded, verified, and applied to the clock buffer or driver. A low frequency pseudorandom frequency hopping time sequence is generated and used for randomizing spread-spectrum to modulate a reference clock (or output clock) of a frequency synthesizer. This hopping time sequence holds the key to unlocking the crypto keys. The PWM modulated crypto keys are carried by the hopping time sequence. To decode the PWM modulated crypto keys, the hopping time sequence is used. The reference clock which is modulated with crypto keys in the spread-spectrum is sent to a decoder (in a processor) along with the hopping time sequence. The crypto keys are decoded and then used to un-gate the clock buffer.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Mohamed A. Abdelmoneum, Nasser Kurd, Thripthi Hegde, Narayan Srinivasa, Peter Sagazio
  • Patent number: 11360933
    Abstract: An integrated circuit (IC) package apparatus is disclosed. The IC package includes one or more processing units and a bridge, mounted below the one or more processing unit, including one or more arithmetic logic units (ALUs) to perform atomic operations.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: June 14, 2022
    Assignee: Intel Corporation
    Inventors: Altug Koker, Farshad Akhbari, Feng Chen, Dukhwan Kim, Narayan Srinivasa, Nadathur Rajagopalan Satish, Liwei Ma, Jeremy Bottleson, Eriko Nurvitadhi, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu
  • Patent number: 11348198
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a plurality of processing units each comprising a plurality of execution units (EUs), wherein the plurality of EUs comprise a first EU type and a second EU type.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: May 31, 2022
    Assignee: Intel Corporation
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu