Patents by Inventor Neal R. Rueger

Neal R. Rueger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080038894
    Abstract: Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a plasma source to provide an increased reactive species density. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation. In one example an electron beam array such as a carbon nanotube array is used to selectively expose a surface during a processing operation.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 14, 2008
    Inventors: Neal R. Rueger, Mark J. Williamson, Gurtej S. Sandhu
  • Publication number: 20080038928
    Abstract: Methods and devices for selective etching in a semiconductor process are shown. Chemical species generated in a reaction chamber provide both a selective etching function and concurrently form a protective coating on other regions. An electron beam provides activation to selective chemical species. In one example, reactive species are generated from a halogen and carbon containing gas source. Addition of other gasses to the system can provide functions such as controlling a chemistry in a protective layer during a processing operation.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 14, 2008
    Inventors: Neal R. Rueger, Mark J. Williamson, Gurtej S. Sandhu
  • Patent number: 7323400
    Abstract: A plasma processing method includes providing a substrate in a processing chamber, the substrate having a surface, and generating a plasma in the processing chamber. The plasma provides at least two regions that exhibit different plasma densities. The method includes exposing at least some of the surface to both of the at least two regions. Exposing the surface to both of the at least two regions may include rotating the plasma and may cyclically expose the surface to the plasma density differences. Exposing to both of the at least two regions may modify a composition and/or structure of the surface. The plasma may include a plasmoid characterized by a steady state plasma wave providing multiple plasma density lobes uniformly distributed about an axis of symmetry and providing plasma between the lobes exhibiting lower plasma densities. Depositing the layer can include ALD and exposure may remove an ALD precursor ligand.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: January 29, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Neal R. Rueger
  • Patent number: 7312857
    Abstract: A method and system are presented for monitoring the optical emissions associated with a plasma used in integrated circuit fabrication. The optical emissions may be processed by an optical spectrometer to obtain a spectrum. The spectrum may be analyzed to determine the presence of particular disassociated species which are indicative of the presence of a suitable plasma and which may be desired for a deposition, etching, or cleaning process.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 25, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Kevin T. Hamer
  • Publication number: 20070278180
    Abstract: A method of imaging and identifying materials on and below the surface of a structure is described. The method may be used in areas as small as one micron in diameter, and may remove a thin portion of the topmost material, repeating the analysis, until a desired depth is obtained. An energetic beam, such as an electron beam, is directed at a selected surface location. The surface has an added layer of a solid, fluid or gaseous reactive material, such as a directed stream of a fluorocarbon, and the energetic beam disassociates the reactive material in the region of the beam into radicals that chemically attack the surface. The reaction products from the radical attack on the surface are pumped away from the surface and analyzed using various methods, such as optical emission, infrared, atomic absorption, or Raman spectroscopy.
    Type: Application
    Filed: June 1, 2006
    Publication date: December 6, 2007
    Inventors: Mark J. Williamson, Gurtej S. Sandhu, Justin R. Arrington, Neal R. Rueger
  • Patent number: 7279377
    Abstract: A method suitable for use during fabrication of a semiconductor device such as a dynamic random access memory or a flash programmable read-only memory comprises etching through silicon nitride and pad oxide layers and into a semiconductor wafer to form a trench into the wafer. A shallow trench isolation (STI) layer is formed in the opening in the silicon nitride and in the trench in the wafer which will, under certain conditions, form with an undesirable void. The silicon nitride and pad oxide layers are removed, then an epitaxial silicon layer is formed on the silicon wafer between the STI. A gate/tunnel oxide layer is formed on the epitaxial silicon layer, then a word line is formed over the gate/tunnel oxide. The epitaxial silicon layer ensures that some minimum distance is maintained between the gate/tunnel oxide and the void in the STI. Wafer processing may then be continued to form a completed semiconductor device.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Gurtej Sandhu
  • Patent number: 7276426
    Abstract: The invention includes a method of forming a semiconductor construction. A semiconductor substrate is placed within a reaction chamber. The substrate comprises a center region and an edge region surrounding the center region. The substrate comprises openings within the center region, and openings within the edge region. While the substrate is within the reaction chamber, a layer of insulative material is formed across the substrate. The layer is thicker over the one of the center region and edge region than over the other of the center region and edge region. The layer is exposed to an etch which removes the insulative material faster from over the one of the center region and edge region than from over the other of the center region and edge region.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Neal R. Rueger
  • Patent number: 7273793
    Abstract: The invention includes a method of filling gaps in a semiconductor substrate. A substrate and a gas mixture containing at least one heavy-hydrogen compound are provided within a reaction chamber. The gas mixture is reacted to form a layer of material over the substrate by simultaneous deposition and etch of the layer. The layer of material fills the gap such that the material within the gap is essentially void-free. The invention includes a method of providing improved deposition rate uniformity. A material is deposited over a surface in the presence of at least one gas selected from the group consisting of D2, HD, DT, T2 and TH. The net deposition rate during the deposition has a degree of variance across the surface which is measurably improved relative to a corresponding degree of variance that occurs during deposition utilizing H2 under otherwise substantially identical conditions.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, William Budge, Weimin Li, Gurtej S. Sandhu
  • Patent number: 7262555
    Abstract: A method and system for plasma generation and processing includes a plurality of beam generators each locally controllable and configured for operation upon a single substrate. A control circuit couples to each of the plurality of beam generators with the control circuit configured to independently regulate at least a portion of the plurality of beam generators. A process gas is introduced into an area above a surface of a substrate. A plurality of beam generators is locally controlled and is directed at the process gas. The beam generators independently emit electrons as controlled and at least a portion of the process gas is converted into plasma according to the electrons emitted from the plurality of the independently controllable beam generators. The substrate is processed using the plasma according to local control of each of the plurality of beam generators.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Gurtej S. Sandhu
  • Patent number: 7255128
    Abstract: Systems and methods are provided for detecting flow in a mass flow controller (MFC). The position of a gate in the MFC is sensed or otherwise determined to monitor flow through the MFC and to immediately or nearly immediately detect a flow failure. In one embodiment of the present invention, a novel MFC is provided. The MFC includes an orifice, a mass flow control gate, an actuator and a gate position sensor. The actuator moves the control gate to control flow through the orifice. The gate position sensor determines the gate position and/or gate movement to monitor flow and immediately or nearly immediately detect a flow failure. According to one embodiment of the present invention, the gate position sensor includes a transmitter for transmitting a signal and a receiver for receiving the signal such that the receiver provides an indication of the position of the gate based on the signal received.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: August 14, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Sujit Sharan, Neal R. Rueger, Allen P. Mardian
  • Patent number: 7202183
    Abstract: The invention includes a method of filling gaps in a semiconductor substrate. A substrate and a gas mixture containing at least one heavy-hydrogen compound are provided within a reaction chamber. The gas mixture is reacted to form a layer of material over the substrate by simultaneous deposition and etch of the layer. The layer of material fills the gap such that the material within the gap is essentially void-free. The invention includes a method of providing improved deposition rate uniformity. A material is deposited over a surface in the presence of at least one gas selected from the group consisting of D2, HD, DT, T2 and TH. The net deposition rate during the deposition has a degree of variance across the surface which is measurably improved relative to a corresponding degree of variance that occurs during deposition utilizing H2 under otherwise substantially identical conditions.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: April 10, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, William Budge, Weimin Li, Gurtej S. Sandhu
  • Patent number: 7189287
    Abstract: Formation of a layer of material on a surface by atomic layer deposition methods and systems includes using electron bombardment of the chemisorbed precursor.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: March 13, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Neal R. Rueger
  • Patent number: 7114404
    Abstract: Systems and methods are provided for detecting flow in a mass flow controller (MFC). The position of a gate in the MFC is sensed or otherwise determined to monitor flow through the MFC and to immediately or nearly immediately detect a flow failure. In one embodiment of the present invention, a novel MFC is provided. The MFC includes an orifice, a mass flow control gate, an actuator and a gate position sensor. The actuator moves the control gate to control flow through the orifice. The gate position sensor determines the gate position and/or gate movement to monitor flow and immediately or nearly immediately detect a flow failure. According to one embodiment of the present invention, the gate position sensor includes a transmitter for transmitting a signal and a receiver for receiving the signal such that the receiver provides an indication of the position of the gate based on the signal received.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Sujit Sharan, Neal R. Rueger, Allen P. Mardian
  • Patent number: 7056833
    Abstract: The invention includes a method of filling gaps in a semiconductor substrate. A substrate and a gas mixture containing at least one heavy-hydrogen compound are provided within a reaction chamber. The gas mixture is reacted to form a layer of material over the substrate by simultaneous deposition and etch of the layer. The layer of material fills the gap such that the material within the gap is essentially void-free. The invention includes a method of providing improved deposition rate uniformity. A material is deposited over a surface in the presence of at least one gas selected from the group consisting of D2, HD, DT, T2 and TH. The net deposition rate during the deposition has a degree of variance across the surface which is measurably improved relative to a corresponding degree of variance that occurs during deposition utilizing H2 under otherwise substantially identical conditions.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: June 6, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, William Budge, Weimin Li, Gurtej S. Sandhu
  • Patent number: 6950178
    Abstract: A method and system are presented for monitoring the optical emissions associated with a plasma used in integrated circuit fabrication. The optical emissions are processed by an optical spectrometer to obtain a spectrum. The spectrum is analyzed to determine the presence of particular disassociated species which are indicative of the presence of a suitable plasma and which are desired for a deposition, etching, or cleaning process.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Kevin T. Hamer
  • Patent number: 6936547
    Abstract: The present invention is generally directed to a novel gas delivery system for various deposition processes, and various methods of using same. In one illustrative embodiment, a deposition tool comprises a process chamber, a wafer stage adapted for holding a wafer positioned therein, and a gas delivery system positioned in the chamber above a position where a plasma will be generated in the chamber, wherein substantially all of a reactant gas is delivered into the chamber via the gas delivery system. In another illustrative embodiment, the reactant gas exiting the gas delivery system is directed so as to cover substantially all of an area defined by an upper surface of the wafer.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: August 30, 2005
    Assignee: Micron Technology, Inc..
    Inventors: Weimin Li, Neal R. Rueger, Li Li, Ross S. Dando, Kevin T. Hamer, Allen P. Mardian
  • Patent number: 6908807
    Abstract: The invention includes a method of forming a semiconductor construction. A semiconductor substrate is placed within a reaction chamber. The substrate comprises a center region and an edge region surrounding the center region. The substrate comprises openings within the center region, and openings within the edge region. While the substrate is within the reaction chamber, a layer of insulative material is formed across the substrate. The layer is thicker over the one of the center region and edge region than over the other of the center region and edge region. The layer is exposed to an etch which removes the insulative material faster from over the one or the center region and edge region than from over the other of the center region and edge region.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Neal R. Rueger
  • Patent number: 6866900
    Abstract: The invention encompasses a method for sequentially processing separate sets of wafers within a chamber. Each set is subjected to plasma-enhanced deposition of material within the chamber utilizing a plasma that is primarily inductively coupled. After the plasma-enhanced deposition, and while the set remains within the chamber, the plasma is changed to a primarily capacitively coupled plasma. The cycling of the plasma from primarily inductively coupled to primarily capacitively coupled can increase the ratio of processed wafers to plasma reaction chamber internal sidewall cleanings that can be obtained while maintaining low particle counts on the processed wafers.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: March 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Weimin Li, Neal R. Rueger
  • Publication number: 20040083972
    Abstract: The present invention is generally directed to a novel gas delivery system for various deposition processes, and various methods of using same. In one illustrative embodiment, a deposition tool comprises a process chamber, a wafer stage adapted for holding a wafer positioned therein, and a gas delivery system positioned in the chamber above a position where a plasma will be generated in the chamber, wherein substantially all of a reactant gas is delivered into the chamber via the gas delivery system. In another illustrative embodiment, the reactant gas exiting the gas delivery system is directed so as to cover substantially all of an area defined by an upper surface of the wafer.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Weimin Li, Neal R. Rueger, Li Li, Ross S. Dando, Kevin T. Hamer, Allen P. Mardian, Gurtej S. Sandhu
  • Publication number: 20040063231
    Abstract: Systems and methods are provided for detecting flow in a mass flow controller (MFC). The position of a gate in the MFC is sensed or otherwise determined to monitor flow through the MFC and to immediately or nearly immediately detect a flow failure. In one embodiment of the present invention, a novel MFC is provided. The MFC includes an orifice, a mass flow control gate, an actuator and a gate position sensor. The actuator moves the control gate to control flow through the orifice. The gate position sensor determines the gate position and/or gate movement to monitor flow and immediately or nearly immediately detect a flow failure. According to one embodiment of the present invention, the gate position sensor includes a transmitter for transmitting a signal and a receiver for receiving the signal such that the receiver provides an indication of the position of the gate based on the signal received.
    Type: Application
    Filed: September 29, 2003
    Publication date: April 1, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Sujit Sharan, Neal R. Rueger, Allen P. Mardian