Patents by Inventor Nicholas C. Harris
Nicholas C. Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250105921Abstract: Described herein are wavelength division multiplexing (WDM) transceivers configured to support fast, bidirectional communication over optical channels. An optical transceiver comprises a transmitter, a receiver, an input/output (I/O) port and an optical interleaver. The transmitter comprises a first bus waveguide and a plurality of optical modulators coupled to the first bus waveguide, each of the optical modulators being resonant at a respective wavelengths in a first wavelength set. The receiver comprises a second bus waveguide and a plurality of optical filters coupled to the second bus waveguide, each of the optical filters being resonant at a respective wavelength in a second wavelength set. The (I/O) port is coupled to an optical channel.Type: ApplicationFiled: September 25, 2024Publication date: March 27, 2025Applicant: Lightmatter, Inc.Inventors: Kuang Liu, Binoy Shah, Sandeep Sane, Jessie Rosenberg, Nikhil Kumar, Anthony Kopa, Carlos Dorta-Quinones, Steven Klinger, Darius Bunandar, Nicholas C. Harris, Srinivasan Ashwyn Srinivasan, Elliot Greenwald
-
Patent number: 12256032Abstract: A portable electronic device may include a housing having a wall defining an opening in the housing and at least a portion of four side surfaces of the portable electronic device. The portable electronic device may further include a display at least partially within the housing, a front cover positioned in the opening in the housing and over the display, the front cover defining a front surface, a peripheral side surface extending from the front surface and at least partially surrounded by the wall of the housing, and a notch that, together with a portion of the wall of the housing, defines an acoustic port of the portable electronic device. The electronic device may further include an acoustic port cover positioned at least partially in the acoustic port and a speaker at least partially within the housing and configured to direct sound through the acoustic port cover.Type: GrantFiled: September 10, 2021Date of Patent: March 18, 2025Assignee: APPLE INC.Inventors: Ethan R. Stobbe, Cameron Bauer, Samuel J. Pliska, Macey E. Dade, Baris Ozgen, Lee E. Hooton, Benjamin S. Bustle, Jason M. Gillier, Stoyan P. Hristov, Anthony B. Sinclair, Nicholas Merz, Daniel Jarvis, Ian A. Spraggs, Mitchell T. Hoertz, Michael D. Quinones, David A. Pakula, Brandon R Collins-Smoot, Matthew R. McGuire, Richard H. Koch, Simon C. Helmore, Gareth L. Rose, Marwan Rammah, Zachary S. Scott, Jonathan M. Lee, Melissa A. Wah, Jacob Barton, Laura M. Burke, Jesse P. Harris, Samruddhi A. Deshpande, Ekaterina Pease, David J. Dunsmoor, Nawaf Al-Baghly
-
Patent number: 12244354Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.Type: GrantFiled: February 14, 2024Date of Patent: March 4, 2025Assignee: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich
-
Publication number: 20250068206Abstract: Systems and methods for performing matrix operations using a photonic processor are provided. The photonic processor includes encoders configured to encode a numerical value into an optical signal and optical multiplication devices configured to output an electrical signal proportional to a product of one or more encoded values. The optical multiplication devices include a first input waveguide, a second input waveguide, a coupler circuit coupled to the first input waveguide and the second input waveguide, a first detector and a second detector coupled to the coupler circuit, and a circuit coupled to the first detector and second detector and configured to output a current that is proportional to a product of a first input value and a second input value.Type: ApplicationFiled: November 12, 2024Publication date: February 27, 2025Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Tyler J. Kenney
-
Publication number: 20250068207Abstract: Described herein are compact, power efficient photonic processors deigned to handle general matrix-matrix (GEMM) operations. A photonic processor may comprise a controller, an optical interferometer, a plurality of signal drivers, and an optical receiver. The controller is configured to obtain a vector of input values and a matrix of parameters. The optical interferometer comprises an output and a plurality of optical phase shifters. Each signal driver of the plurality of signal drivers is configured to control a respective phase shifter to phase shift light traveling in the optical interferometer based on i) a polarity set by a respective parameter of the matrix, and ii) an amount set by a respective input value of the vector. The optical receiver is coupled to the output of the optical interferometer.Type: ApplicationFiled: August 20, 2024Publication date: February 27, 2025Applicant: Lightmatter, Inc.Inventors: Nicholas C. Harris, Anthony Kopa, Carl Ramey, Darius Bunandar, Michael Gould
-
Publication number: 20250068003Abstract: Aspects of the present application relate to an optical phase shifter including a first waveguide defined in a first semiconductor layer, the first waveguide comprising a single-mode portion, a multi-mode portion, and a tapered portion coupling the single-mode portion to the multi-mode portion. A second waveguide is defined in a second semiconductor layer, the second waveguide having a tapered portion and a tip, wherein the tapered portion of the second waveguide overlaps with the tapered portion of the first waveguide. For tuning the phase change, a first electrically resistive path, defined at least partially in the first semiconductor layer, is included. The first electrically resistive path intersects the multi-mode portion of the first waveguide.Type: ApplicationFiled: August 20, 2024Publication date: February 27, 2025Applicant: Lightmatter, Inc.Inventors: Shashank Gupta, Jessie Rosenberg, Alexander Sludds, Nicholas C. Harris, Darius Bunandar
-
Patent number: 12237871Abstract: Photonic interposers that enable low-power, high-bandwidth inter-chip (e.g., board-level and/or rack-level) as well as intra-chip communication are described. Described herein are techniques, architectures and processes that improve upon the performance of conventional computers. Some embodiments provide photonic interposers that use photonic tiles, where each tile includes programmable photonic circuits that can be programmed based on the needs of a particular computer architecture. Some tiles are instantiations of a common template tile that are stitched together in a 1D or a 2D arrangement. Some embodiments described herein provide a programmable physical network designed to connect pairs of tiles together with photonic links.Type: GrantFiled: March 27, 2023Date of Patent: February 25, 2025Assignee: Lightmatter, Inc.Inventors: Mykhailo Tymchenko, Bradford Turcott, Robert Turner, Binoy Shah, Shashank Gupta, James Carr, Ajay Joshi, Nicholas C. Harris, Darius Bunandar
-
Patent number: 12235489Abstract: Described herein are photonic communication platforms that permit use by multiple users in a secure way. A platform comprises a substrate, a first photonic circuit monolithically integrated with the substrate, and a second photonic circuit monolithically integrated with the substrate. The first photonic circuit is patterned with a first plurality of photonic modules, the photonic modules of the first plurality being copies of a common template photonic module The second photonic circuit is patterned with a second plurality of photonic modules, the photonic modules of the second plurality being copies of the common template photonic module. A photonic link couples the first photonic circuit to the second photonic circuit. A controller optically isolates the first photonic circuit from the second photonic circuit by optically interrupting the photonic link.Type: GrantFiled: March 1, 2024Date of Patent: February 25, 2025Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Robert Turner
-
Publication number: 20250062833Abstract: Aspects relate to a photonic processing system, a photonic processor, and a method of performing matrix-vector multiplication. An optical encoder may encode an input vector into a first plurality of optical signals. A photonic processor may receive the first plurality of optical signals; perform a plurality of operations on the first plurality of optical signals, the plurality of operations implementing a matrix multiplication of the input vector by a matrix; and output a second plurality of optical signals representing an output vector. An optical receiver may detect the second plurality of optical signals and output an electrical digital representation of the output vector.Type: ApplicationFiled: August 29, 2024Publication date: February 20, 2025Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Carl Ramey
-
Publication number: 20250028130Abstract: Described herein are techniques for yield enhancement in photonic communications platforms. A photonic communication platform may include a photonic substrate patterned with a plurality of photonic modules including at least first and second photonic modules, wherein the first and second photonic modules are copies of a common template photonic module. Yield enhancement may be accomplished using photonic redundancy and/or electronic redundancy. Photonic redundancy may involve redundant optical lanes provided in parallel to primary optical lanes. Electronic redundancy may involve use of additional electronic circuits or wires running in parallel to electronic circuits or wires. Defective circuits may be disabled to prevent negative impacts on other parts of the electronic system. This can be done by providing power-isolating switches that completely disable and isolate the defective circuits.Type: ApplicationFiled: September 27, 2024Publication date: January 23, 2025Applicant: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey
-
Patent number: 12206220Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix multiplications (e.g., matrix vector multiplications). Matrix multiplications are broken down in scalar multiplications and scalar additions. Some embodiments relate to devices for performing scalar additions in the optical domain. One optical adder, for example, includes an interferometer having a plurality of phase shifters and a coherent detector. Leveraging the high-speed characteristics of these optical adders, some processors are sufficiently fast to support clocks in the tens of gigahertz of frequency, which represent a significant improvement over conventional electronic processors.Type: GrantFiled: April 26, 2021Date of Patent: January 21, 2025Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Anthony Kopa, Carl Ramey, Darius Bunandar, Michael Gould
-
Patent number: 12174656Abstract: Systems and methods for performing matrix operations using a photonic processor are provided. The photonic processor includes encoders configured to encode a numerical value into an optical signal and optical multiplication devices configured to output an electrical signal proportional to a product of one or more encoded values. The optical multiplication devices include a first input waveguide, a second input waveguide, a coupler circuit coupled to the first input waveguide and the second input waveguide, a first detector and a second detector coupled to the coupler circuit, and a circuit coupled to the first detector and second detector and configured to output a current that is proportional to a product of a first input value and a second input value.Type: GrantFiled: November 9, 2023Date of Patent: December 24, 2024Assignee: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Tyler J. Kenney
-
Patent number: 12130484Abstract: Described herein are techniques for yield enhancement in photonic communications platforms. A photonic communication platform may include a photonic substrate patterned with a plurality of photonic modules including at least first and second photonic modules, wherein the first and second photonic modules are copies of a common template photonic module. Yield enhancement may be accomplished using photonic redundancy and/or electronic redundancy. Photonic redundancy may involve redundant optical lanes provided in parallel to primary optical lanes. Electronic redundancy may involve use of additional electronic circuits or wires running in parallel to electronic circuits or wires. Defective circuits may be disabled to prevent negative impacts on other parts of the electronic system. This can be done by providing power-isolating switches that completely disable and isolate the defective circuits.Type: GrantFiled: September 12, 2022Date of Patent: October 29, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey
-
Publication number: 20240353886Abstract: Systems and methods for performing matrix operations using a photonic processor are provided. The photonic processor includes encoders configured to encode a numerical value into an optical signal and optical multiplication devices configured to output an electrical signal proportional to a product of one or more encoded values. The optical multiplication devices include a first input waveguide, a second input waveguide, a coupler circuit coupled to the first input waveguide and the second input waveguide, a first detector and a second detector coupled to the coupler circuit, and a circuit coupled to the first detector and second detector and configured to output a current that is proportional to a product of a first input value and a second input value.Type: ApplicationFiled: November 9, 2023Publication date: October 24, 2024Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Tyler J. Kenney
-
Publication number: 20240353614Abstract: Described herein photonic interconnects based on glass interposers. Glass interposers of the types described herein are used to photonically interconnect multiple smaller photonic integrated circuits (PIC), as opposed to using a single, larger PIC. The typical yield of a glass interposer is significantly higher than the yield of a PIC. This is because glass interposers are passive in nature, while PICs include active photonic elements. Active photonic components (e.g., photonic transceivers and switches) tend to be more susceptible to manufacturing defects than passive photonic components (e.g., waveguides and couplers) because active components require additional manufacturing steps (e.g., ion implantation, sputtering, epitaxial growth, etc.). The approach described herein improves performance because instead of having to slice a large number of continuous reticles from a wafer, one can pick and choose reticles known to have yielded.Type: ApplicationFiled: April 18, 2024Publication date: October 24, 2024Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Shashank Gupta, Jessie Rosenberg, Clifford Chao, Kuang Liu, Nicholas C. Harris
-
Patent number: 12124082Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: August 24, 2023Date of Patent: October 22, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Patent number: 12124081Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: July 21, 2023Date of Patent: October 22, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Patent number: 12113581Abstract: Aspects relate to a photonic processing system, a photonic processor, and a method of performing matrix-vector multiplication. An optical encoder may encode an input vector into a first plurality of optical signals. A photonic processor may receive the first plurality of optical signals; perform a plurality of operations on the first plurality of optical signals, the plurality of operations implementing a matrix multiplication of the input vector by a matrix; and output a second plurality of optical signals representing an output vector. An optical receiver may detect the second plurality of optical signals and output an electrical digital representation of the output vector.Type: GrantFiled: January 27, 2023Date of Patent: October 8, 2024Assignee: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Carl Ramey
-
Publication number: 20240310867Abstract: Hybrid analog-digital processing systems are described. An example of a hybrid analog-digital processing system includes photonic accelerator configured to perform matrix-vector multiplication using light. The photonic accelerator exhibits a frequency response having a first bandwidth (e.g., less than 3 GHz). The hybrid analog-digital processing system further includes a plurality of analog-to-digital converters (ADCs) coupled to the photonic accelerator, and a plurality of digital equalizers coupled to the plurality of ADCs, wherein the digital equalizers are configured to set a frequency response of the hybrid analog-digital processing system to a second bandwidth greater than the first bandwidth.Type: ApplicationFiled: May 28, 2024Publication date: September 19, 2024Applicant: Lightmatter, Inc.Inventors: Michael Gould, Carl Ramey, Nicholas C. Harris, Darius Bunandar
-
Patent number: 12092867Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: December 1, 2023Date of Patent: September 17, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko