Patents by Inventor Nicholas James Wooder

Nicholas James Wooder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9161723
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a physiological rate. The system may generate and sort multiple difference signals based on the physiological signal. The system may analyze a first sorted difference signal and a second sorted difference signal to determine at least one first metric, and analyze a third sorted difference signal and a fourth sorted difference signal to determine at least one second metric. The system may qualify or disqualify the calculated value based on the at least one first and second metrics. The segments used to generate the third and fourth sorted difference signals may, for example, be subsets of the segments used to generate the first and second sorted difference signals.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 20, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9155478
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a difference signal based on the physiological signal and sort the difference signal to generate a sorted difference signal. The system may identify a midpoint of a first segment of the difference signal and a midpoint of a second segment of the difference signal. The first segment may correspond to positive values of the difference signal and the second segment may correspond to negative values of the difference signal. The system may determine an algorithm setting based on the first midpoint and the second midpoint. The algorithm setting may, for example, affect the amount of filtering applied to the physiological signal.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 13, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9149196
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a difference signal based on the physiological signal. The system may determine positive areas associated with positive regions of the difference signal and negative areas associated with negative regions of the difference signal. The system may determine area ratios based on adjacent positive and negative regions of the difference signal. The system may determine an algorithm setting based on the area ratios. The algorithm setting may, for example, affect the amount of filtering applied to the physiological signal.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 6, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9149232
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a physiological rate. Based on the value, the system may select pairs of values of the physiological signal that are particularly spaced. The system may determine a state for each pair of values. The state may correspond to a set of criteria such as, for example, equalities, inequalities, logical operators, or other criteria. The system may determine a number of state transitions based on the determined states, and qualify or disqualify the calculated value based on the number of state transitions.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 6, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 8868148
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 21, 2014
    Assignee: Covidien LP
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140256032
    Abstract: Test kits for assessing male fertility include a sample holder containing at least one sample chamber, a laser light source, and a light detector to detect scattered light intensity from the sample chamber. The sample holder may include multiple sample chambers connected by sperm swim channels. The test kit may have a housing with a maximum linear dimension of no more than 100 mm. Processing circuitry may be provided that is configured to produce a sperm count and/or sperm motility measurements by processing data from scattered light intensity measurements.
    Type: Application
    Filed: February 19, 2014
    Publication date: September 11, 2014
    Applicant: CHURCH & DWIGHT CO., INC.
    Inventors: Nicholas James Wooder, Giles Sanders, Roger Brian Minchin Clarke, Albert R. Nazareth, Shang Li
  • Publication number: 20140254004
    Abstract: Test kits for assessing male fertility include a sample holder defining an object plane, a lens, and a two dimensional light sensor defining an image plane arranged along a common linear axis. The distance between the object plane and the image plane may be no more than 50 mm, and may be no more than 30 mm. A lens aperture may have an area of 1-10 mm2. The test kit may have a housing with a maximum linear dimension of no more than 100 mm. Processing circuitry may be provided that is configured to produce a sperm count and/or sperm motility measurements by processing image data from the two-dimensional light sensor.
    Type: Application
    Filed: February 19, 2014
    Publication date: September 11, 2014
    Applicant: Church & Dwight Co., Inc.
    Inventors: Nicholas James Wooder, Giles Sanders, Albert R. Nazareth, Shang Li
  • Publication number: 20140073876
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073866
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073940
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may select two segments of the physiological signal, shifted in time relative to one another by a lag value, and determine a correlation value between the two segments. The system may determine a metric based on the segments, and determine correlation information based on the correlation value and the metric. The metric may be indicative of how well the segments are correlated, providing additional information relative to the correlation value. Based on the metric, the system may modify the correlation value, determine a confidence value, or determine other information. The system may determine physiological rate information based on the correlation information.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073935
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may condition the physiological signal to assist in the determination of the physiological information. The system may generate a positive signal and a negative signal based on respective positive and negative values of the physiological signal. The system may filter the positive and negative signals, combine the filtered signals, and modify the physiological signal based on the combined signal. The physiological signal may be modified, for example, by subtracting the combined signal from the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073932
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, and other information, such as signal-to-noise information, from a physiological signal. The system may generate at least one difference signal based on the physiological signal and sort the at least one difference signal to generate at least one sorted difference signal. The system may analyze the at least one sorted difference signal to determine at least two values indicative of noise. The system may determine a value indicative of a signal-to-noise ratio based on the two or more values indicative of noise.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073877
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventor: Nicholas James Wooder
  • Publication number: 20140073956
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073941
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a physiological rate. Based on the value, the system may select pairs of values of the physiological signal that are particularly spaced. The system may determine a state for each pair of values. The state may correspond to a set of criteria such as, for example, equalities, inequalities, logical operators, or other criteria. The system may determine a number of state transitions based on the determined states, and qualify or disqualify the calculated value based on the number of state transitions.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073967
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando James Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073898
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073878
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073864
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando James Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073867
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a period associated with a physiological rate. The system may determine a first value indicative of a baseline of the physiological signal and a second value indicative of a deviation of the physiological signal from the baseline. The first value may, for example, be a median value, an average, or a coefficient corresponding to a best fit curve of the physiological signal. The second value may be a standard deviation value, a standard error, or a root mean square value based on the physiological signal. The system may qualify or disqualify the calculated value based on the first and second values.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder