Patents by Inventor Nicholas James Wooder

Nicholas James Wooder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140073959
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may filter the physiological signal based on an adjustable filter to generate a filtered physiological signal. The system may perform calculations over time based on the filtered physiological signal to determine values indicative of a physiological parameter. The adjustable filter may be adjusted based on the values indicative of the physiological parameter. Some of the calculations are qualified and some of the calculations are disqualified. The system may determine a metric based on the physiological signal that is used to determine whether to output a value based on one or more previously calculated values when a current calculation is disqualified. The system may output a value based on one or more previously calculated values when a current calculation is disqualified and when a criterion based on the metric is satisfied.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073943
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a physiological rate. The system may generate and sort multiple difference signals based on the physiological signal. The system may analyze a first sorted difference signal and a second sorted difference signal to determine at least one first metric, and analyze a third sorted difference signal and a fourth sorted difference signal to determine at least one second metric. The system may qualify or disqualify the calculated value based on the at least one first and second metrics. The segments used to generate the third and fourth sorted difference signals may, for example, be subsets of the segments used to generate the first and second sorted difference signals.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073871
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a difference signal based on the physiological signal and sort the difference signal to generate a sorted difference signal. The system may identify a midpoint of a first segment of the difference signal and a midpoint of a second segment of the difference signal. The first segment may correspond to positive values of the difference signal and the second segment may correspond to negative values of the difference signal. The system may determine an algorithm setting based on the first midpoint and the second midpoint. The algorithm setting may, for example, affect the amount of filtering applied to the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073865
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a physiological rate. The system may generate value pairs from a first collection of values of the physiological signal and another collection of corresponding value of the physiological signal spaced from the first collection based on the calculated value. The system may determine a best fit linear relationship based on the value pairs and determine at least one statistical metric based on the linear relationship and the value pairs. The system may qualify or disqualify the calculated value based on the at least one statistical metric.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073945
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a period associated with a physiological rate. The system may generated a first sorted difference signal based on a segment of the physiological signal having a size corresponding to the period. The system may generate second and third sorted difference signals based on segments of the physiological signal having sizes corresponding to a fraction of the period and a multiple of the period. The system may analyze the first, second, and third sorted difference signals, and qualify or disqualify the calculated value based on the analysis.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073951
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073958
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a window of data, and determine physiological information based on the window of data. The generated window of data may include one or more samples of physiological data, from the physiological signal, and one or more initialization values. The initialization values may include random numbers, noise values, sample values, scaled values thereof, or a combination thereof.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073938
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a correlation sequence between two segments of the physiological signal at multiple correlation lag values. The system may compare the correlation sequence to a predetermined threshold, which may vary as a function of lag. Based on the comparison, the system may determine whether the correlation sequence value exceeds the threshold, and whether the correlation sequence value corresponds to a peak. The system may identify a lag value when the correlation sequence corresponding to the lag value exceeds the threshold and corresponds to a peak. The system may determine physiological rate information based on the identified lag value.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073874
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, and other information, such as noise information, from a physiological signal. The system may generate a difference signal based on the physiological signal and sort the difference signal to generate a sorted difference signal. The system may determine slope values for multiple segments of the sorted difference signal. The system may determine two end groups of the segments and determine at least one threshold based on the end groups. One or more end data points of the sorted difference signal may be identified as being associated with noise based on the at least one threshold. The system may determine a value indicative of noise based on the identified data points.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC.
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073862
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may apply a digital filter to the physiological signal to assist in the determination of the physiological information. The system may determine a metric based on the physiological signal, and selectively apply the digital filter to the physiological signal based on the metric. The digital filter, which may include two or more filter coefficients, may correspond to a weighted sum of the physiological signal and a difference signal corresponding to the physiological signal. The filter coefficients may be adjustable, allowing selectivity in the characteristics of the digital filter between weighting the physiological signal and difference signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073968
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073869
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a window of physiological data, and determine the physiological information based on the window of data. The system may use status indicators to determine when the window of data is to be updated with new data. The status indicator may include, for example, a gain change indicator, indicating a change in gain in an amplifier. Based on the status indicator, the system may, for example, set a period of time during which current physiological data is not added to the window of data. The system may smooth the transition of the physiological data before and after the period of time.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073937
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may condition the physiological signal to assist in the determination of the physiological information. The system may generate absolute values of the physiological signal, filter the absolute values, and modify the physiological signal based on the filtered signal. The filtered signal may be shifted in amplitude prior to modifying the physiological signal. The modification may include dividing the physiological signal by the filtered signal to normalize the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073942
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may determine a skew metric based on the physiological signal. The system may also determine a correlation lag value corresponding to a peak in a correlation sequence derived from the physiological signal. The system may qualify or disqualify the correlation lag value based on the skew metric. The system may, for example, compare the skew metric and the correlation lag value to a reference set of skew metric values and correlation lag values to determine whether to qualify or disqualify the correlation lag value.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Publication number: 20140073949
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073960
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073948
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073975
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073953
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente, Nicholas James Wooder
  • Publication number: 20140073939
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a lag matrix, which includes multiple segments of the physiological signal each having the same number of values. The system may generate a correlation matrix, which includes multiple correlation values, based on the lag matrix. The system may identify a peak in the correlation lag matrix, or a processed matrix derived thereof, and the corresponding lag value. The correlation matrix, or processed matrix thereof, may be rotated, averaged, or otherwise transformed by the system to identify the lag value. The system may determine physiological rate information based on the identified lag value.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: NELLCOR PURITAN BENNETT LLC
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder