Patents by Inventor Nicholas Rizzo

Nicholas Rizzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090335
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 14, 2024
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Phillip MATHER, Kenneth SMITH, Sanjeev AGGARWAL, Jon SLAUGHTER, Nicholas RIZZO
  • Patent number: 11678584
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: June 13, 2023
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Publication number: 20210265563
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 26, 2021
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Phillip MATHER, Kenneth SMITH, Sanjeev AGGARWAL, Jon SLAUGHTER, Nicholas RIZZO
  • Patent number: 11024799
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: June 1, 2021
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Patent number: 10622554
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 14, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Jijun Sun, Nicholas Rizzo, Jon Slaughter, Dimitri Houssameddine, Frederick Mancoff
  • Patent number: 10601371
    Abstract: An array of magnetic nanoparticle (MNP) spin torque oscillators (STOs) is described. Each STO is comprised of a uniform, chemically synthesized, spherical nanoparticle which couples to current flowing along a surface. The particles are organized into an array by a self-assembly technique with uniform spacing and close proximity to allow strong electrical and magnetic coupling between particles. The coupling of the nanoparticles to the surface current drives the oscillations by spin-torque, and for phase locking and data input. The uniform, spherical shape of the particles allows the oscillations to be achieved at low currents and with low power dissipation. The MNP-STOs may be used as a basis for massively parallel computing, microwave oscillators, or other applications.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: March 24, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Richard Arthur Kiehl, Nicholas Rizzo
  • Patent number: 10516103
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: December 24, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Jijun Sun, Nicholas Rizzo, Jon Slaughter, Dimitri Houssameddine, Frederick Mancoff
  • Publication number: 20190386212
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 19, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Renu WHIG, Jijun SUN, Nicholas RIZZO, Jon SLAUGHTER, Dimitri HOUSSAMEDDINE, Frederick MANCOFF
  • Publication number: 20190280198
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 12, 2019
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Jijun SUN, Nicholas RIZZO, Jon SLAUGHTER, Dimitri HOUSSAMEDDINE, Frederick MANCOFF
  • Publication number: 20190221737
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Phillip MATHER, Kenneth SMITH, Sanjeev AGGARWAL, Jon SLAUGHTER, Nicholas RIZZO
  • Patent number: 10347828
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 9, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Jijun Sun, Nicholas Rizzo, Jon Slaughter, Dimitri Houssameddine, Frederick Mancoff
  • Publication number: 20190173428
    Abstract: An array of magnetic nanoparticle (MNP) spin torque oscillators (STOs) is described. Each STO is comprised of a uniform, chemically synthesized, spherical nanoparticle which couples to current flowing along a surface. The particles are organized into an array by a self-assembly technique with uniform spacing and close proximity to allow strong electrical and magnetic coupling between particles. The coupling of the nanoparticles to the surface current drives the oscillations by spin-torque, and for phase locking and data input. The uniform, spherical shape of the particles allows the oscillations to be achieved at low currents and with low power dissipation. The MNP-STOs may be used as a basis for massively parallel computing, microwave oscillators, or other applications.
    Type: Application
    Filed: May 5, 2017
    Publication date: June 6, 2019
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Richard Arthur KIEHL, Nicholas RIZZO
  • Patent number: 10276789
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: April 30, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Publication number: 20190123268
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Jijun SUN, Nicholas RIZZO, Jon SLAUGHTER, Dimitri HOUSSAMEDDINE, Frederick MANCOFF
  • Patent number: 10199574
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: February 5, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Jijun Sun, Nicholas Rizzo, Jon Slaughter, Dimitri Houssameddine, Frederick Mancoff
  • Publication number: 20180226574
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Applicant: Everspin Technologies, Inc.
    Inventors: Renu Whig, Jijun Sun, Nicholas Rizzo, Jon Slaughter, Dimitri Houssameddine, Frederick Mancoff
  • Publication number: 20180130944
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Patent number: 9947865
    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: April 17, 2018
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Jijun Sun, Nicholas Rizzo, Jon Slaughter, Dimitri Houssameddine, Frederick Mancoff
  • Patent number: 9893274
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 13, 2018
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Patent number: RE49404
    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: January 31, 2023
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip Mather, Jon Slaughter, Nicholas Rizzo