Patents by Inventor Nicole K. Thomas

Nicole K. Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11450765
    Abstract: A quantum dot device is disclosed that includes a fin and a gate above the fin. The fin may extend away from a base and include a quantum well stack in which one or more quantum dots may be formed during operation of the quantum dot device. The gate may include a gate electrode material having a first portion and a second portion, where the first portion is above the quantum well stack and the second portion is a portion that is not above the quantum well stack and is separated from the base by an insulating material. The quantum dot device may further include a metal structure between the second portion of the gate electrode material and the base, forming a portion of a diode provided in series with the gate, which diode may provide at least some ESD protection for the quantum dot device.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts
  • Patent number: 11444188
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin includes a quantum well layer; an insulating material at least partially above the fin, wherein the insulating material includes a trench above the fin; and a gate metal on the insulating material and extending into the trench.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 13, 2022
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Nicole K. Thomas, Hubert C. George, Jeanette M. Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke
  • Patent number: 11424324
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate and an adjacent second gate above the quantum well stack; and a multi-spacer between the first gate and the second gate, wherein the multi-spacer includes a first spacer and a second spacer different from the first spacer, and the first spacer is at least partially between the quantum well stack and the second spacer.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Lester Lampert, James S. Clarke, Nicole K. Thomas, Roman Caudillo, David J. Michalak, Jeanette M. Roberts
  • Patent number: 11417755
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer; a first gate above the quantum well stack, wherein the first gate includes a first gate metal; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal, and a material structure of the second gate metal is different from a material structure of the first gate metal; wherein the quantum well layer has a first strain under the first gate, a second strain under the second gate, and the first strain is different from the second strain.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Kanwaljit Singh, Ravi Pillarisetty, Nicole K. Thomas, Payam Amin, Roman Caudillo, Hubert C. George, Jeanette M. Roberts, Zachary R. Yoscovits, James S. Clarke, Lester Lampert, David J. Michalak
  • Patent number: 11417765
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric layer; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric layer, and the second gate dielectric layer extends over the first gate.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Publication number: 20220216305
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11355623
    Abstract: Embodiments of the present disclosure describe a method of fabricating spin qubit device assemblies that utilize dopant-based spin qubits, i.e. spin qubit devices which operate by including a donor or an acceptor dopant atom in a semiconductor host layer. The method includes, first, providing a pair of gate electrodes over a semiconductor host layer, and then providing a window structure between the first and second gate electrodes, the window structure being a continuous solid material extending between the first and second electrodes and covering the semiconductor host layer except for an opening through which a dopant atom is to be implanted in the semiconductor host layer. By using a defined gate-first process, the method may address the scalability challenges and create a deterministic path for fabricating dopant-based spin qubits in desired locations, promoting wafer-scale integration of dopant-based spin qubit devices for use in quantum computing devices.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: June 7, 2022
    Assignee: Intel Corporation
    Inventors: Lester Lampert, James S. Clarke, Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Kanwaljit Singh, Roman Caudillo, Hubert C. George, Zachary R. Yoscovits, Nicole K. Thomas
  • Patent number: 11335778
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 17, 2022
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Publication number: 20220147858
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a base and a fin extending away from the base and including a quantum well layer. The device may further include a first gate disposed on a first side of the fin and a second gate disposed on a second side of the fin, different from the first side. Providing gates on different sides of a fin advantageously allows increasing the number of quantum dots which may be independently formed and manipulated in the fin. The quantum dots formed in such a device may be constrained in the x-direction by the one or more gates, in the y-direction by the fin, and in the z-direction by the quantum well layer, as discussed in detail herein. Methods for fabricating such devices are also disclosed.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Hubert C. George, Jeanette M. Roberts, Nicole K. Thomas, James S. Clarke
  • Publication number: 20220140086
    Abstract: Disclosed herein are quantum dot devices with single electron transistor (SET) detectors. In some embodiments, a quantum dot device may include: a quantum dot formation region; a group of gates disposed on the quantum dot formation region, wherein the group of gates includes at least first, second, and third gates, spacers are disposed on sides of the first and second gates, wherein a first spacer is disposed on a side of the first gate proximate to the second gate, and a second spacer, physically separate from the first spacer, is disposed on a side of the second gate proximate to the first gate, and the third gate is disposed between the first and second gates and extends between the first and second spacers; and a SET disposed on the quantum dot formation region, proximate to the group of gates.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Applicant: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Nicole K. Thomas, Jeanette M. Roberts, James S. Clarke
  • Publication number: 20220140085
    Abstract: Disclosed herein are quantum computing assemblies, as well as related computing devices and methods. For example, in some embodiments, a quantum computing assembly may include: a quantum device die to generate a plurality of qubits; a control circuitry die to control operation of the quantum device die; and a substrate; wherein the quantum device die and the control circuitry die are disposed on the substrate.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Applicant: Intel Corporation
    Inventors: Jeanette M. Roberts, Ravi Pillarisetty, Nicole K. Thomas, Hubert C. George, James S. Clarke, Adel A. Elsherbini
  • Publication number: 20220102339
    Abstract: Gallium nitride (GaN) three-dimensional integrated circuit technology is described. In an example, an integrated circuit structure includes a layer including gallium and nitrogen, a plurality of gate structures over the layer including gallium and nitrogen, a source region on a first side of the plurality of gate structures, a drain region on a second side of the plurality of gate structures, the second side opposite the first side, and a drain field plate above the drain region wherein the drain field plate is coupled to the source region. In another example, a semiconductor package includes a package substrate. A first integrated circuit (IC) die is coupled to the package substrate. The first IC die includes a GaN device layer and a Si-based CMOS layer.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Pratik KOIRALA, Nicole K. THOMAS, Paul B. FISCHER, Adel A. ELSHERBINI, Tushar TALUKDAR, Johanna M. SWAN, Wilfred GOMES, Robert S. CHAU, Beomseok CHOI
  • Publication number: 20220102344
    Abstract: Gallium nitride (GaN) three-dimensional integrated circuit technology is described. In an example, an integrated circuit structure includes a layer including gallium and nitrogen, a plurality of gate structures over the layer including gallium and nitrogen, a source region on a first side of the plurality of gate structures, a drain region on a second side of the plurality of gate structures, the second side opposite the first side, and a drain field plate above the drain region wherein the drain field plate is coupled to the source region. In another example, a semiconductor package includes a package substrate. A first integrated circuit (IC) die is coupled to the package substrate. The first IC die includes a GaN device layer and a Si-based CMOS layer.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Pratik KOIRALA, Nicole K. THOMAS, Paul B. FISCHER, Adel A. ELSHERBINI, Tushar TALUKDAR, Johanna M. SWAN, Wilfred GOMES, Robert S. CHAU, Beomseok CHOI
  • Patent number: 11288586
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a base and a fin extending away from the base and including a quantum well layer. The device may further include a first gate disposed on a first side of the fin and a second gate disposed on a second side of the fin, different from the first side. Providing gates on different sides of a fin advantageously allows increasing the number of quantum dots which may be independently formed and manipulated in the fin. The quantum dots formed in such a device may be constrained in the x-direction by the one or more gates, in the y-direction by the fin, and in the z-direction by the quantum well layer, as discussed in detail herein. Methods for fabricating such devices are also disclosed.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: March 29, 2022
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Hubert C. George, Jeanette M. Roberts, Nicole K. Thomas, James S. Clarke
  • Publication number: 20220093790
    Abstract: Co-integrated gallium nitride (GaN) complementary metal oxide semiconductor (CMOS) integrated circuit technology is described. In an example, a semiconductor structure includes a silicon (111) substrate having a first region and a second region. A structure including gallium and nitrogen is on the first region of the silicon (111) substrate, the structure including gallium and nitrogen having a top surface. A structure including germanium is on the second region of the silicon (111) substrate, the structure including germanium having a top surface co-planar with the top surface of the structure including gallium and nitrogen. A dielectric spacer is laterally between and in contact with the structure including gallium and nitrogen and the structure including germanium, the dielectric spacer on the silicon (111) substrate.
    Type: Application
    Filed: September 23, 2020
    Publication date: March 24, 2022
    Inventors: Glenn A. GLASS, Anand S. MURTHY, Robert EHLERT, Han Wui THEN, Marko RADOSAVLJEVIC, Nicole K. THOMAS, Sandrine CHARUE-BAKKER
  • Patent number: 11276756
    Abstract: Disclosed herein are quantum dot devices with single electron transistor (SET) detectors. In some embodiments, a quantum dot device may include: a quantum dot formation region; a group of gates disposed on the quantum dot formation region, wherein the group of gates includes at least first, second, and third gates, spacers are disposed on sides of the first and second gates, wherein a first spacer is disposed on a side of the first gate proximate to the second gate, and a second spacer, physically separate from the first spacer, is disposed on a side of the second gate proximate to the first gate, and the third gate is disposed between the first and second gates and extends between the first and second spacers; and a SET disposed on the quantum dot formation region, proximate to the group of gates.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Nicole K. Thomas, Jeanette M. Roberts, James S. Clarke
  • Publication number: 20220013658
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer.
    Type: Application
    Filed: September 10, 2021
    Publication date: January 13, 2022
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Van H. Le, Nicole K. Thomas, Hubert C. George, Jeanette M. Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke, Roza Kotlyar, Kanwaljit Singh
  • Publication number: 20210407999
    Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Anh PHAN, Nicole K. THOMAS, Urusa ALAAN, Seung Hoon SUNG, Christopher M. NEUMANN, Willy RACHMADY, Patrick MORROW, Hui Jae YOO, Richard E. SCHENKER, Marko RADOSAVLJEVIC, Jack T. KAVALIEROS, Ehren MANNEBACH
  • Patent number: 11183564
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer and a barrier layer; a first gate metal above the quantum well stack, wherein the barrier layer is between the first gate metal and the quantum well layer; and a second gate metal above the quantum well stack, wherein the barrier layer is between the second gate metal and the quantum well layer, and a material structure of the second gate metal is different from a material structure of the first gate metal.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: November 23, 2021
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Payam Amin, Roza Kotlyar, Patrick H. Keys, Hubert C. George, Kanwaljit Singh, James S. Clarke, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts
  • Publication number: 20210343845
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack structure of a quantum dot device, wherein the quantum well stack structure includes an insulating material to define multiple rows of quantum dot formation regions; and a gate that extends over multiple ones of the rows.
    Type: Application
    Filed: July 6, 2021
    Publication date: November 4, 2021
    Applicant: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Jeanette M. Roberts, Nicole K. Thomas, James S. Clarke