Patents by Inventor Nicole K. Thomas

Nicole K. Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11158731
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: October 26, 2021
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Van H. Le, Nicole K. Thomas, Hubert C. George, Jeanette Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke, Roza Kotlyar, Kanwaljit Singh
  • Publication number: 20210328019
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer, wherein the quantum well layer includes an isotopically purified material; a gate dielectric above the quantum well stack; and a gate metal above the gate dielectric, wherein the gate dielectric is between the quantum well layer and the gate metal.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Ravi Pillarisetty, Kanwaljit Singh, Payam Amin, Hubert C. George, Jeanette M. Roberts, Roman Caudillo, David J. Michalak, Zachary R. Yoscovits, Lester Lampert
  • Publication number: 20210296480
    Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gates above the quantum well stack; and a plurality of second gates above the quantum well stack; wherein the plurality of first gates are arranged in electrically continuous rows extending in a first direction, and the plurality of second gates are arranged in electrically continuous rows extending in a second direction perpendicular to the first direction.
    Type: Application
    Filed: June 8, 2021
    Publication date: September 23, 2021
    Applicant: Intel Corporation
    Inventors: James S. Clarke, Nicole K. Thomas, Zachary R. Yoscovits, Hubert C. George, Jeanette M. Roberts, Ravi Pillarisetty
  • Patent number: 11114530
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer, wherein the quantum well layer includes an isotopically purified material; a gate dielectric above the quantum well stack; and a gate metal above the gate dielectric, wherein the gate dielectric is between the quantum well layer and the gate metal.
    Type: Grant
    Filed: December 17, 2017
    Date of Patent: September 7, 2021
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Ravi Pillarisetty, Kanwaljit Singh, Payam Amin, Hubert C. George, Jeanette M. Roberts, Roman Caudillo, David J. Michalak, Zachary R. Yoscovits, Lester Lampert
  • Patent number: 11107891
    Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gates above the quantum well stack; and a plurality of second gates above the quantum well stack; wherein the plurality of first gates are arranged in electrically continuous first rows and the plurality of second gates are arranged in electrically continuous second rows parallel to the first rows. Quantum dot devices according to various embodiments of the present disclosure are based on arranging first and second gates in hexagonal/honeycomb arrays.
    Type: Grant
    Filed: December 23, 2017
    Date of Patent: August 31, 2021
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Hubert C. George, Nicole K. Thomas, Jeanette M. Roberts, Roman Caudillo, Zachary R. Yoscovits, Kanwaljit Singh, Roza Kotlyar, Patrick H. Keys, James S. Clarke
  • Patent number: 11101352
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack structure of a quantum dot device, wherein the quantum well stack structure includes an insulating material to define multiple rows of quantum dot formation regions; and a gate that extends over multiple ones of the rows.
    Type: Grant
    Filed: September 24, 2016
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Jeanette M. Roberts, Nicole K. Thomas, James S. Clarke
  • Patent number: 11075293
    Abstract: Disclosed herein are qubit-detector die assemblies, as well as related computing devices and methods. In some embodiments, a die assembly may include: a first die having a first face and an opposing second face, wherein a plurality of active qubit devices are disposed at the first face of the first die; and a second die, mechanically coupled to the first die, having a first face and an opposing second face, wherein a plurality of quantum state detector devices are disposed at the first face of the second die; wherein the first faces of the first and second dies face each other.
    Type: Grant
    Filed: September 24, 2016
    Date of Patent: July 27, 2021
    Assignee: Intel Corporation
    Inventors: Jeanette M. Roberts, Ravi Pillarisetty, Nicole K. Thomas, Hubert C. George, James S. Clarke
  • Patent number: 11063040
    Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gates above the quantum well stack; and a plurality of second gates above the quantum well stack; wherein the plurality of first gates are arranged in electrically continuous rows extending in a first direction, and the plurality of second gates are arranged in electrically continuous rows extending in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: December 24, 2016
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: James S. Clarke, Nicole K. Thomas, Zachary R. Yoscovits, Hubert C. George, Jeanette M. Roberts, Ravi Pillarisetty
  • Patent number: 11011693
    Abstract: Embodiments of the present disclosure describe integrated quantum circuit assemblies that include quantum circuit components pre-packaged, or integrated, with some other electronic components and mechanical attachment means for easy inclusion within a cooling apparatus. An example integrated quantum circuit assembly includes a package and mechanical attachment means for securing the package within a cryogenic chamber of a cooling apparatus. The package includes a plurality of components, such as a quantum circuit component, an attenuator, and a directional coupler, which are integral to the package. Such an integrated assembly may significantly speed up installation and may help develop systems for rapidly bringing up quantum computers.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Lester Lampert, Ravi Pillarisetty, Nicole K. Thomas, Hubert C. George, Jeanette M. Roberts, David J. Michalak, Roman Caudillo, Thomas Francis Watson, Stephanie A. Bojarski, James S. Clarke
  • Publication number: 20210036110
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer, wherein the quantum well layer includes an isotopically purified material; a gate dielectric above the quantum well stack; and a gate metal above the gate dielectric, wherein the gate dielectric is between the quantum well layer and the gate metal.
    Type: Application
    Filed: December 17, 2017
    Publication date: February 4, 2021
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Ravi Pillarisetty, Kanwaljit Singh, Payam Amin, Hubert C. George, Jeanette M. Roberts, Roman Caudillo, David J. Michalak, Zachary R. Yoscovits, Lester Lampert
  • Patent number: 10910488
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin has a first side face and a second side face, and the fin includes a quantum well layer; and a gate above the fin, wherein the gate extends down along the first side face.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: February 2, 2021
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Lester Lampert, James S. Clarke, Ravi Pillarisetty, Zachary R. Yoscovits, Nicole K. Thomas, Roman Caudillo, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts
  • Patent number: 10879446
    Abstract: Embodiments of the present disclosure relate to quantum circuit assemblies implementing superconducting qubits, e.g., transmons, in which SQUID loops and portions of FBLs configured to magnetically couple to the SQUID loops extend substantially vertically. In contrast to conventional implementations, for a vertical SQUID according to various embodiments of the present disclosure, a line that is perpendicular to the SQUID loop is parallel to the qubit substrate. A corresponding FBL is also provided in a vertical arrangement, in order to achieve efficient magnetic coupling to the vertical SQUID loop, by ensuring that at least a portion of the FBL designed to conduct current responsible for generating magnetic field for tuning qubit frequency is substantially perpendicular to the substrate.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Roman Caudillo, Lester Lampert, David J. Michalak, Jeanette M. Roberts, Ravi Pillarisetty, Hubert C. George, Nicole K. Thomas, James S. Clarke
  • Publication number: 20200403137
    Abstract: Embodiments of the present disclosure describe integrated quantum circuit assemblies that include quantum circuit components pre-packaged, or integrated, with some other electronic components and mechanical attachment means for easy inclusion within a cooling apparatus. An example integrated quantum circuit assembly includes a package and mechanical attachment means for securing the package within a cryogenic chamber of a cooling apparatus. The package includes a plurality of components, such as a quantum circuit component, an attenuator, and a directional coupler, which are integral to the package. Such an integrated assembly may significantly speed up installation and may help develop systems for rapidly bringing up quantum computers.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 24, 2020
    Inventors: Lester Lampert, Ravi Pillarisetty, Nicole K. Thomas, Hubert C. George, Jeanette M. Roberts, David J. Michalak, Roman Caudillo, Thomas Francis Watson, Stephanie A. Bojarski, James S. Clarke
  • Publication number: 20200373351
    Abstract: Embodiments of the present disclosure propose qubit substrates, as well as methods of fabricating thereof and related device assemblies. In one aspect of the present disclosure, a qubit substrate includes a base substrate of a doped semiconductor material, and a layer of a substantially intrinsic semiconductor material over the base substrate. Engineering a qubit substrate in this manner allows improving coherence times of qubits provided thereon, while, at the same time, being sufficiently mechanically robust so that it can be efficiently used in large-scale manufacturing.
    Type: Application
    Filed: September 18, 2017
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Jeanette M. Roberts, Wesley T. Harrison, Adel A. Elsherbini, Stefano Pellerano, Zachary R. Yoscovits, Lester Lampert, Ravi Pillarisetty, Roman Caudillo, Hubert C. George, Nicole K. Thomas, David J. Michalak, Kanwaljit Singh, James S. Clarke
  • Patent number: 10847705
    Abstract: Embodiments of the present disclosure describe two approaches to providing flux bias line structures for superconducting qubit devices. The first approach, applicable to flux bias line structures that include at least one portion that terminates with a ground connection, resides in terminating such a portion with a ground connection that is electrically isolated from the common ground plane of a quantum circuit assembly. The second approach resides in providing a SQUID loop of a superconducting qubit device and a portion of the flux bias line structure over a portion of a substrate that is elevated with respect to other portions of the substrate. These approaches may be used or alone or in combination, and may improve grounding of and reduce crosstalk caused by flux bias lines in quantum circuit assemblies.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Lester Lampert, Adel A. Elsherbini, James S. Clarke, Jeanette M. Roberts, Ravi Pillarisetty, David J. Michalak, Kanwaljit Singh, Roman Caudillo, Zachary R. Yoscovits, Nicole K. Thomas, Hubert C. George, Stefano Pellerano
  • Publication number: 20200365656
    Abstract: Disclosed herein are quantum dot devices and techniques. In some embodiments, a quantum computing processing device may include a quantum well stack, an array of quantum dot gate electrodes above the quantum well stack, and an associated array of selectors above the array of quantum dot gate electrodes. The array of quantum dot gate electrodes and the array of selectors may each be arranged in a grid.
    Type: Application
    Filed: September 28, 2017
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Nicole K. Thomas, Abhishek A. Sharma, Hubert C. George, Jeanette M. Roberts, Zachary R. Yoscovits, Roman Caudillo, Kanwaljit Singh, James S. Clarke
  • Publication number: 20200365688
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; an insulating material disposed above the quantum well stack, wherein the insulating material includes a trench; and a gate metal disposed on the insulating material and extending into the trench.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Jeanette M. Roberts, Nicole K. Thomas, James S. Clarke
  • Publication number: 20200350423
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer.
    Type: Application
    Filed: September 28, 2017
    Publication date: November 5, 2020
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Van H. Le, Nicole K. Thomas, Hubert C. George, Jeanette Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke, Roza Kotlyar, Kanwaljit Singh
  • Patent number: 10804399
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack with first and second quantum well layers, a first set of gates disposed on the quantum well stack such that the first quantum well layer is disposed between the barrier layer and the first set of gates, a first set of conductive pathways extending from the first set of gates to a first face of the quantum dot device, a second set of gates disposed on the quantum well stack such that the second quantum well layer is disposed between the barrier layer and the second set of gates, and a second set of conductive pathways extending from the second set of gates to a second face of the quantum dot device, wherein the second face is different from the first face.
    Type: Grant
    Filed: September 24, 2016
    Date of Patent: October 13, 2020
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jeanette M. Roberts, Nicole K. Thomas, Hubert C. George, James S. Clarke
  • Patent number: 10803396
    Abstract: Disclosed herein are superconducting qubit devices with Josephson Junctions utilizing resistive switching materials, i.e., resistive Josephson Junctions (RJJs), as well as related methods and quantum circuit assemblies. In some embodiments, an RJJ may include a bottom electrode, a top electrode, and a resistive switching layer (RSL) disposed between the bottom electrode and the top electrode. Using the RSLs in Josephson Junctions of superconducting qubits may allow fine tuning of junction resistance, which is particularly advantageous for optimizing performance of superconducting qubit devices. In addition, RJJs may be fabricated using methods that could be efficiently used in large-scale manufacturing, providing a substantial improvement with respect to approaches for forming conventional Josephson Junctions, such as e.g. double-angle shadow evaporation approach.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: October 13, 2020
    Assignee: Intel Corporation
    Inventors: Zachary R. Yoscovits, Roman Caudillo, Ravi Pillarisetty, Hubert C. George, Adel A. Elsherbini, Lester Lampert, James S. Clarke, Nicole K. Thomas, Kanwaljit Singh, David J. Michalak, Jeanette M. Roberts