Patents by Inventor Niloy Mukherjee
Niloy Mukherjee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11871584Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 16, 2021Date of Patent: January 9, 2024Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11869928Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 14, 2021Date of Patent: January 9, 2024Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11869843Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 16, 2021Date of Patent: January 9, 2024Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11862517Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 16, 2021Date of Patent: January 2, 2024Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11854593Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.Type: GrantFiled: September 17, 2021Date of Patent: December 26, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
-
Patent number: 11844203Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 16, 2021Date of Patent: December 12, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11844225Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 16, 2021Date of Patent: December 12, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Publication number: 20230395369Abstract: The disclosed technology generally relates to forming a titanium nitride layer, and more particularly to forming by atomic layer deposition a titanium nitride layer on a seed layer. In one aspect, a semiconductor structure comprises a semiconductor substrate comprising a non-metallic surface. The semiconductor structure additionally comprises a seed layer comprising silicon (Si) and nitrogen (N) conformally coating the non-metallic surface and a TiN layer conformally coating the seed layer. Aspects are also directed to methods of forming the semiconductor structures.Type: ApplicationFiled: February 15, 2023Publication date: December 7, 2023Inventors: Sung-Hoon Jung, Niloy Mukherjee, Hee Seok Kim, Kyu Jin Choi, Moonsig Joo, Hae Young Kim, Yoshikazu Okuyama, Nariman Naghibolashrafi, Bunsen B. Nie, Somilkumar J. Rathi
-
Patent number: 11839070Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 16, 2021Date of Patent: December 5, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11839088Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.Type: GrantFiled: December 16, 2021Date of Patent: December 5, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11832537Abstract: The disclosed technology generally relates to a barrier layer comprising titanium silicon nitride, and more particularly to a barrier layer for nonvolatile memory devices, and methods of forming the same. In one aspect, a method of forming an electrode for a phase change memory device comprises forming over a semiconductor substrate an electrode comprising titanium silicon nitride (TiSiN) on a phase change storage element configured to store a memory state. Forming the electrode comprises exposing a semiconductor substrate to one or more cyclical vapor deposition cycles, wherein a plurality of the cyclical vapor deposition cycles comprises an exposure to a Ti precursor, an exposure to a N precursor and an exposure to a Si precursor.Type: GrantFiled: October 8, 2019Date of Patent: November 28, 2023Assignee: Eugenus, Inc.Inventors: Jae Seok Heo, Jerry Mack, Somilkumar J. Rathi, Niloy Mukherjee
-
Patent number: 11832451Abstract: Non lead-based perovskite ferroelectric devices for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.Type: GrantFiled: August 6, 2021Date of Patent: November 28, 2023Assignee: KEPLER COMPUTING INC.Inventors: Debraj Guhabiswas, Maria Isabel Perez, Jason Y. Wu, James David Clarkson, Gabriel Antonio Paulius Velarde, Niloy Mukherjee, Noriyuki Sato, Amrita Mathuriya, Sasikanth Manipatruni, Ramamoorthy Ramesh
-
Patent number: 11792998Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.Type: GrantFiled: June 11, 2021Date of Patent: October 17, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11785782Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.Type: GrantFiled: June 11, 2021Date of Patent: October 10, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11769790Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.Type: GrantFiled: February 1, 2022Date of Patent: September 26, 2023Assignee: KEPLER COMPUTING INC.Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
-
Publication number: 20230301113Abstract: A device structure comprises a first conductive interconnect, an electrode structure on the first conductive interconnect, an etch stop layer laterally surrounding the electrode structure; a plurality of memory devices above the electrode structure, where individual ones of the plurality of memory devices comprise a dielectric layer comprising a perovskite material. The device structure further comprises a plate electrode coupled between the plurality of memory devices and the electrode structure, where the plate electrode is in direct contact with a respective lower most conductive layer of the individual ones of the plurality of memory devices. The device structure further includes an insulative hydrogen barrier layer on at least a sidewall of the individual ones of the plurality of memory devices; and a plurality of via electrodes, wherein individual ones of the plurality of via electrodes are on a respective one of the individual ones of the plurality of memory devices.Type: ApplicationFiled: March 18, 2022Publication date: September 21, 2023Applicant: Kepler Computing Inc.Inventors: Noriyuki Sato, Tanay Gosavi, Rafael Rios, Amrita Mathuriya, Niloy Mukherjee, Mauricio Manfrini, Rajeev Kumar Dokania, Somilkumar J. Rathi, Sasikanth Manipatruni
-
Publication number: 20230298905Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.Type: ApplicationFiled: February 1, 2022Publication date: September 21, 2023Applicant: Kepler Computing Inc.Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
-
Patent number: 11765908Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.Type: GrantFiled: February 10, 2023Date of Patent: September 19, 2023Assignee: KEPLER COMPUTING INC.Inventors: Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
-
Patent number: 11765909Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.Type: GrantFiled: June 11, 2021Date of Patent: September 19, 2023Assignee: KEPLER COMPUTING INC.Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11741428Abstract: A method for monetizing ferroelectric process development is described. In at least one embodiment, the method comprises procuring a target material based on a model driven selection which is based on charge, mass and magnetic moment, and/or mass of the atomic constituents of the target material. The method further comprises applying the target material to a fabrication process to build a ferroelectric device. The method further comprises generating a notification indicative of procurement of the target material and application of the target material. The method further comprises electronically transmitting the notification to a customer, wherein the notification includes an invoice having a line item associated with a cost of the procuring of the target material and application of the target material.Type: GrantFiled: December 23, 2022Date of Patent: August 29, 2023Assignee: Kepler Computing Inc.Inventors: Sasikanth Manipatruni, Niloy Mukherjee, Noriyuki Sato, Tanay Gosavi, Somilkumar J. Rathi, James David Clarkson, Rajeev Kumar Dokania, Debo Olaosebikan, Amrita Mathuriya