Patents by Inventor Nisha Ananthakrishnan

Nisha Ananthakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9640415
    Abstract: Methods for covalently and indelibly anchoring a polyacrylate polymer using a UV-induced polymerization process in the presence of a photoinitiator to an oxide surface are disclosed herein. The methods and compositions prepared by the methods can be used as indelible marking materials for use on microelectronic packages and as solder and sealant barriers to prevent overspreading of liquids on the oxide surfaces of microelectronic packages. The polyacrylate polymers are covalently linked to the oxide surface by use during the printing and UV-curing process of an adhesion promoter having as a first domain an oxide-reactive silyl group, bonded via a linker to an acrylate-reactive group.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Randall D Lowe, Jr., Suriyakala Suriya Ramalingam, Nisha Ananthakrishnan, James C. Matayabas, Jr., Arjun Krishnan, Hitesh Arora
  • Patent number: 9631065
    Abstract: Methods of forming microelectronic packaging structures and associated structures formed thereby are described. Those methods and structures may include forming a wafer level underfill (WLUF) material comprising a resin material, and adding at least one of a UV absorber, a sterically hindered amine light stabilizer (HALS), an organic surface protectant (OSP), and a fluxing agent to form the WLUF material. The WLUF is then applied to a top surface of a wafer comprising a plurality of die.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 25, 2017
    Assignee: Intel Corporation
    Inventors: Anna M. Prakash, James C. Matayabas, Arjun Krishnan, Nisha Ananthakrishnan
  • Patent number: 9611372
    Abstract: An underfill composition comprises a curable resin, a plurality of filler particles loaded within the resin, the filler particles comprising at least 50 weight % of the underfill composition. The filler particles comprise first filler particles having a particle size of from 0.1 micrometers to 15 micrometers and second filler particles having a particle size of less than 100 nanometers. A viscosity of the underfill composition is less than a viscosity of a corresponding composition not including the second filler particles.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: April 4, 2017
    Assignee: Intel Corporation
    Inventors: Yonghao Xiu, Nisha Ananthakrishnan, Yiqun Bai, Arjun Krishnan
  • Publication number: 20170042043
    Abstract: A fluxing-encapsulant material and method of use thereof in a thermal compression bonding (TCB) process is described. In an embodiment, the TCB process includes ramping the bond head to 250° C.-300° C. at a ramp rate of 50° C./second-100° C./second. In an embodiment, the fluxing-encapsulant material comprising one or more epoxy resins having an epoxy equivalent weight (EEW) of 150-1,000, a curing agent, and a fluxing agent having a mono-carboxylic acid or di-carboxylic acid and a pKa of 4-5.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: SIVAKUMAR NAGARAJAN, SANDEEP RAZDAN, NISHA ANANTHAKRISHNAN, CRAIG J. WEINMAN, KABIRKUMAR J. MIRPURI
  • Publication number: 20160343591
    Abstract: Embodiments of the present disclosure are directed to techniques and configurations for an integrated circuit (IC) package having an underfill layer with filler particles arranged in a generally random distribution pattern. In some embodiments, a generally random distribution pattern of filler particles may be obtained by reducing an electrostatic charge on one or more components of the IC package assembly, by applying a surface treatment to filler to reduce filler electrical charge, by applying an electric force against the filler particles of the underfill material in a direction opposite to a direction of gravitational force, by using an underfill material with a relatively low maximum filler particle size, and/or by snap curing the underfill layer at a relatively low temperature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 24, 2016
    Inventors: Suriyakala Ramalingam, Manish Dubey, Hsin-Yu Li, Michelle S. Phen-Givoni, Hitesh Arora, Nisha Ananthakrishnan, Yiqun Bai, Yonghao Xiu, Rajendra C. Dias
  • Patent number: 9504168
    Abstract: A fluxing-encapsulant material and method of use thereof in a thermal compression bonding (TCB) process is described. In an embodiment, the TCB process includes ramping the bond head to 250° C.-300° C. at a ramp rate of 50° C./second-100° C./second. In an embodiment, the fluxing-encapsulant material comprising one or more epoxy resins having an epoxy equivalent weight (EEW) of 150-1,000, a curing agent, and a fluxing agent having a mono-carboxylic acid or di-carboxylic acid and a pKa of 4-5.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 22, 2016
    Inventors: Sivakumar Nagarajan, Sandeep Razdan, Nisha Ananthakrishnan, Craig J. Weinman, Kabirkumar J. Mirpuri
  • Patent number: 9458283
    Abstract: Underfill materials for fabricating electronic devices are described. One embodiment includes an underfill composition including an epoxy mixture, an amine hardener component, and a filler. The epoxy mixture may include a first epoxy comprising a bisphenol epoxy, a second epoxy comprising a multifunctional epoxy, and a third epoxy comprising an aliphatic epoxy, the aliphatic epoxy comprising a silicone epoxy. The first, second, and third epoxies each have a different chemical structure. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: October 4, 2016
    Assignee: INTEL CORPORATION
    Inventors: Dingying Xu, Nisha Ananthakrishnan, Hong Dong, Rahul N. Manepalli, Nachiket R. Raravikar, Gregory S. Constable
  • Patent number: 9431274
    Abstract: Embodiments of the present disclosure are directed to techniques and configurations for an integrated circuit (IC) package having an underfill layer with filler particles arranged in a generally random distribution pattern. In some embodiments, a generally random distribution pattern of filler particles may be obtained by reducing an electrostatic charge on one or more components of the IC package assembly, by applying a surface treatment to filler to reduce filler electrical charge, by applying an electric force against the filler particles of the underfill material in a direction opposite to a direction of gravitational force, by using an underfill material with a relatively low maximum filler particle size, and/or by snap curing the underfill layer at a relatively low temperature. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 30, 2016
    Assignee: Intel Corporation
    Inventors: Suriyakala Ramalingam, Manish Dubey, Hsin-Yu Li, Michelle S. Phen, Hitesh Arora, Nisha Ananthakrishnan, Yiqun Bai, Yonghao Xiu, Rajendra C. Dias
  • Publication number: 20160240395
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: Yiqun Bai, Yuying Wei, Arjun Krishnan, Suriyakala Ramalingam, Yonghao Xiu, Beverly J. Canham, Sivakumar Nagarajan, Saikumar Jayaraman, Nisha Ananthakrishnan
  • Publication number: 20160168351
    Abstract: An underfill composition comprises a curable resin, a plurality of filler particles loaded within the resin, the filler particles comprising at least 50 weight % of the underfill composition. The filler particles comprise first filler particles having a particle size of from 0.1 micrometers to 15 micrometers and second filler particles having a particle size of less than 100 nanometers. A viscosity of the underfill composition is less than a viscosity of a corresponding composition not including the second filler particles.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Yonghao Xiu, Nisha Ananthakrishnan, Yiqun Bai, Arjun Krishnan
  • Patent number: 9330993
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 3, 2016
    Assignee: Intel Corporation
    Inventors: Yiqun Bai, Yuying Wei, Arjun Krishnan, Suriyakala Ramalingam, Yonghao Xiu, Beverly J. Canham, Sivakumar Nagarajan, Saikumar Jayaraman, Nisha Ananthakrishnan
  • Patent number: 9269596
    Abstract: An underfill composition comprises a curable resin, a plurality of filler particles loaded within the resin, the filler particles comprising at least 50 weight % of the underfill composition. The filler particles comprise first filler particles having a particle size of from 0.1 micrometers to 15 micrometers and second filler particles having a particle size of less than 100 nanometers. A viscosity of the underfill composition is less than a viscosity of a corresponding composition not including the second filler particles.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 23, 2016
    Assignee: Intel Corporation
    Inventors: Yonghao Xiu, Nisha Ananthakrishnan, Yiqun Bai, Arjun Krishnan
  • Publication number: 20150284503
    Abstract: Underfill materials for fabricating electronic devices are described. One embodiment includes an underfill composition including an epoxy mixture, an amine hardener component, and a filler. The epoxy mixture may include a first epoxy comprising a bisphenol epoxy, a second epoxy comprising a multifunctional epoxy, and a third epoxy comprising an aliphatic epoxy, the aliphatic epoxy comprising a silicone epoxy. The first, second, and third epoxies each have a different chemical structure. Other embodiments are described and claimed.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Dingying XU, Nisha ANANTHAKRISHNAN, Hong DONG, Rahul N. MANEPALLI, Nachiket R. RARAVIKAR, Gregory S. CONSTABLE
  • Patent number: 9068067
    Abstract: Underfill materials for fabricating electronic devices are described. One embodiment includes an underfill composition including an epoxy mixture, an amine hardener component, and a filler. The epoxy mixture may include a first epoxy comprising a bisphenol epoxy, a second epoxy comprising a multifunctional epoxy, and a third epoxy comprising an aliphatic epoxy, the aliphatic epoxy comprising a silicone epoxy. The first, second, and third epoxies each have a different chemical structure. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: June 30, 2015
    Assignee: INTEL CORPORATION
    Inventors: Dingying Xu, Nisha Ananthakrishnan, Hong Dong, Rahul N. Manepalli, Nachiket Raravikar, Gregory S. Constable
  • Publication number: 20150179478
    Abstract: An underfill composition comprises a curable resin, a plurality of filler particles loaded within the resin, the filler particles comprising at least 50 weight % of the underfill composition. The filler particles comprise first filler particles having a particle size of from 0.1 micrometers to 15 micrometers and second filler particles having a particle size of less than 100 nanometers. A viscosity of the underfill composition is less than a viscosity of a corresponding composition not including the second filler particles.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Inventors: Yonghao Xiu, Nisha Ananthakrishnan, Yiqun Bai, Arjun Krishnan
  • Publication number: 20150166804
    Abstract: Methods for covalently and indelibly anchoring a polyacrylate polymer using a UV-induced polymerization process in the presence of a photoinitiator to an oxide surface are disclosed herein. The methods and compositions prepared by the methods can be used as indelible marking materials for use on microelectronic packages and as solder and sealant barriers to prevent overspreading of liquids on the oxide surfaces of microelectronic packages. The polyacrylate polymers are covalently linked to the oxide surface by use during the printing and UV-curing process of an adhesion promoter having as a first domain an oxide-reactive silyl group, bonded via a linker to an acrylate-reactive group.
    Type: Application
    Filed: December 1, 2014
    Publication date: June 18, 2015
    Inventors: Randall D. Lowe, JR., Suriyakala Suriya Ramalingam, Nisha Ananthakrishnan, James C. Matayabas, JR., Arjun Krishnan, Hitesh Arora
  • Patent number: 8916981
    Abstract: Epoxy-amine underfill materials for semiconductor packages and semiconductor packages having an epoxy-amine underfill material are described. In an example, a semiconductor apparatus includes a semiconductor die having a surface with an integrated circuit thereon. A semiconductor package substrate has a surface with a plurality of contact pads thereon. A plurality of conductive contacts couples the surface of the semiconductor die to the surface of the semiconductor package substrate. An epoxy-amine underfill material is disposed between the surface of the semiconductor die and the surface of the semiconductor package substrate and surrounds the plurality of conductive contacts. The epoxy-amine underfill has high adhesion and is based on a low volatility multi-functional amine species.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: December 23, 2014
    Assignee: Intel Corporation
    Inventors: Yonghao Xiu, Yiqun Bai, Nisha Ananthakrishnan, Nachiket R. Raravikar
  • Patent number: 8900919
    Abstract: Methods for covalently and indelibly anchoring a polyacrylate polymer using a UV-induced polymerization process in the presence of a photoinitiator to an oxide surface are disclosed herein. The methods and compositions prepared by the methods can be used as indelible marking materials for use on microelectronic packages and as solder and sealant barriers to prevent overspreading of liquids on the oxide surfaces of microelectronic packages. The polyacrylate polymers are covalently linked to the oxide surface by use during the printing and UV-curing process of an adhesion promoter having as a first domain an oxide-reactive silyl group, bonded via a linker to an acrylate-reactive group.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Intel Corporation
    Inventors: Randall D. Lowe, Jr., Suriyakala Suriya Ramalingam, Nisha Ananthakrishnan, James C. Matayabas, Jr., Arjun Krishnan, Hitesh Arora
  • Patent number: 8895365
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for surface treatment of an integrated circuit (IC) substrate. In one embodiment, an apparatus includes an integrated circuit substrate, an interconnect structure disposed on the integrated circuit substrate, the interconnect structure being configured to route electrical signals to or from the integrated circuit substrate and comprising a metal surface, and a protective layer disposed on the metal surface of the interconnect structure, the protective layer comprising a first functional group bonded with the metal surface and a second functional group bonded with the first functional group, wherein the second functional group is hydrophobic to inhibit contamination of the metal surface by hydrophilic materials and further inhibits oxidation of the metal surface. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: November 25, 2014
    Assignee: Intel Corporation
    Inventors: Suriyakala Ramalingam, Rajen S. Sidhu, Nisha Ananthakrishnan, Sivakumar Nagarajan, Wei Tan, Sandeep Razdan, Vipul V. Mehta
  • Publication number: 20140332966
    Abstract: Epoxy-amine underfill materials for semiconductor packages and semiconductor packages having an epoxy-amine underfill material are described. In an example, a semiconductor apparatus includes a semiconductor die having a surface with an integrated circuit thereon. A semiconductor package substrate has a surface with a plurality of contact pads thereon. A plurality of conductive contacts couples the surface of the semiconductor die to the surface of the semiconductor package substrate. An epoxy-amine underfill material is disposed between the surface of the semiconductor die and the surface of the semiconductor package substrate and surrounds the plurality of conductive contacts. The epoxy-amine underfill has high adhesion and is based on a low volatility multi-functional amine species.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Inventors: Yonghao Xiu, Yiqun Bai, Nisha Ananthakrishnan, Nachiket R. Raravikar