Patents by Inventor Nisha Ananthakrishnan

Nisha Ananthakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140264827
    Abstract: Methods of forming microelectronic packaging structures and associated structures formed thereby are described. Those methods and structures may include forming a wafer level underfill (WLUF) material comprising a resin material, and adding at least one of a UV absorber, a sterically hindered amine light stabilizer (HALS), an organic surface protectant (OSP), and a fluxing agent to form the WLUF material. The WLUF is then applied to a top surface of a wafer comprising a plurality of die.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Anna M. Prakash, James C. Matayabas, Arjun Krishnan, Nisha Ananthakrishnan
  • Publication number: 20140264957
    Abstract: Methods for covalently and indelibly anchoring a polyacrylate polymer using a UV-induced polymerization process in the presence of a photoinitiator to an oxide surface are disclosed herein. The methods and compositions prepared by the methods can be used as indelible marking materials for use on microelectronic packages and as solder and sealant barriers to prevent overspreading of liquids on the oxide surfaces of microelectronic packages. The polyacrylate polymers are covalently linked to the oxide surface by use during the printing and UV-curing process of an adhesion promoter having as a first domain an oxide-reactive silyl group, bonded via a linker to an acrylate-reactive group.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Randall D. Lowe, JR., Suriyakala Suriya Ramalingam, Nisha Ananthakrishnan, James C. Matayabas, JR., Arjun Krishnan, Hitesh Arora
  • Publication number: 20140177149
    Abstract: Embodiments of the present disclosure are directed to techniques and configurations for an integrated circuit (IC) package having an underfill layer with filler particles arranged in a generally random distribution pattern. In some embodiments, a generally random distribution pattern of filler particles may be obtained by reducing an electrostatic charge on one or more components of the IC package assembly, by applying a surface treatment to filler to reduce filler electrical charge, by applying an electric force against the filler particles of the underfill material in a direction opposite to a direction of gravitational force, by using an underfill material with a relatively low maximum filler particle size, and/or by snap curing the underfill layer at a relatively low temperature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Suriyakala Ramalingam, Manish Dubey, Hsin-Yu Li, Michelle S. Phen, Hitesh Arora, Nisha Ananthakrishnan, Yiqun Bai, Yonghao Xiu, Rajendra C. Dias
  • Publication number: 20140175634
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Yiqun Bai, Yuying Wei, Arjun Krishnan, Suriyakala Ramalingam, Yonghao Xiu, Beverly J. Canham, Sivakumar Nagarajan, Saikumar Jayaraman, Nisha Ananthakrishnan
  • Publication number: 20140061902
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for surface treatment of an integrated circuit (IC) substrate. In one embodiment, an apparatus includes an integrated circuit substrate, an interconnect structure disposed on the integrated circuit substrate, the interconnect structure being configured to route electrical signals to or from the integrated circuit substrate and comprising a metal surface, and a protective layer disposed on the metal surface of the interconnect structure, the protective layer comprising a first functional group bonded with the metal surface and a second functional group bonded with the first functional group, wherein the second functional group is hydrophobic to inhibit contamination of the metal surface by hydrophilic materials and further inhibits oxidation of the metal surface. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Suriyakala Ramalingam, Rajen S. Sidhu, Nisha Ananthakrishnan, Sivakumar Nagarajan, Wei Tan, Sandeep Razdan, Vipul V. Mehta
  • Publication number: 20130263446
    Abstract: A fluxing-encapsulant material and method of use thereof in a thermal compression bonding (TCB) process is described. In an embodiment, the TCB process includes ramping the bond head to 250° C.-300° C. at a ramp rate of 50° C./second-100° C./second. In an embodiment, the fluxing-encapsulant material comprising one or more epoxy resins having an epoxy equivalent weight (EEW) of 150-1,000, a curing agent, and a fluxing agent having a mono-carboxylic acid or di-carboxylic acid and a pKa of 4-5.
    Type: Application
    Filed: September 30, 2011
    Publication date: October 10, 2013
    Applicant: Intel Corporation
    Inventors: Sivakumar Nagarajan, Sandeep Razdan, Nisha Ananthakrishnan, Craig J. Weinman, Kabirkumar J. Mirpuri
  • Publication number: 20120074597
    Abstract: Underfill materials for fabricating electronic devices are described. One embodiment includes an underfill composition including an epoxy mixture, an amine hardener component, and a filler. The epoxy mixture may include a first epoxy comprising a bisphenol epoxy, a second epoxy comprising a multifunctional epoxy, and a third epoxy comprising an aliphatic epoxy, the aliphatic epoxy comprising a silicone epoxy. The first, second, and third epoxies each have a different chemical structure. Other embodiments are described and claimed.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Dingying Xu, Nisha Ananthakrishnan, Hong Dong, Rahul N. Manepalli, Nachiket Raravikar, Gregory S. Constable
  • Patent number: 7759780
    Abstract: A microelectronic package is provided. The microelectronic package includes a semiconductor substrate and a die having a top surface and a bottom surface, wherein the bottom surface of the die is coupled to the semiconductor substrate. The microelectronic package also includes a nanomaterial layer disposed on the top surface of the die.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 20, 2010
    Assignee: Intel Corporation
    Inventors: Nirupama Chakrapani, Vijay S Wakharkar, Janet Feng, Nisha Ananthakrishnan, Shankar Ganapathysubramanian, Gregory S Constable
  • Publication number: 20100078806
    Abstract: A microelectronic package is provided. The microelectronic package includes a semiconductor substrate and a die having a top surface and a bottom surface, wherein the bottom surface of the die is coupled to the semiconductor substrate. The microelectronic package also includes a nanomaterial layer disposed on the top surface of the die.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Nirupama Chakrapani, Vijay S. Wakharkar, Janet Feng, Nisha Ananthakrishnan, Shankar Ganapathysubranian, Gregory S. Constable
  • Publication number: 20090170247
    Abstract: Electronic devices and methods for fabricating electronic devices are described. One embodiment includes a method comprising providing a first body and a second body, and electrically coupling the first body to the second body using a plurality of solder bumps, wherein a gap remains between the first body and the second body. The method also includes placing an underfill material into the gap between the first body and the second body, the underfill material comprising magnetic particles in a polymer composition. The method also includes curing the underfill material in the gap by applying a magnetic field powered by alternating current, to induce heat in the magnetic particles, wherein the heat in the magnetic particles heats the polymer composition, and the magnetic field is applied for a sufficient time to cure the polymer composition. Other embodiments are described and claimed.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Inventors: Linda A. SHEKHAWAT, Gregory S. CONSTABLE, Youzhi E. XU, Nisha ANANTHAKRISHNAN