Patents by Inventor Nitin Jain

Nitin Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10123324
    Abstract: The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 6, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sudhir Kumar Baghel, Nitin Jain, Venkateswara Rao Manepalli
  • Publication number: 20180287617
    Abstract: An electronic device disclosed herein includes a locked loop circuit configured to receive a reference signal intended to have an intended frequency, wherein the locked look circuit is intended to generate an intended output signal having an intended frequency equal to the intended frequency multiplied by an intended multiplier. A frequency counter counts a number of pulses of the reference signal during a time window so as to determine an actual frequency of the reference signal. A control circuit determines an actual multiplier for the locked loop circuit that, when multiplied by the actual frequency of the reference signal, causes the locked loop circuit to generate an actual output signal having an actual frequency equal to the intended frequency.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Applicant: STMicroelectronics International N.V.
    Inventors: Anand Kumar, Nitin Gupta, Nitin Jain
  • Publication number: 20180287266
    Abstract: Illustrative embodiments significantly improve RF isolation in a packaged integrated circuit by separating the pins/pads associated with multiple RF channels from one another and also from pins/pads associated with digital circuits. Specifically, in certain exemplary embodiments, the integrated circuit is configured with the pins/pad for the digital circuits on a first edge of the chip, the pins/pads for common RF signals on a second edge of the chip opposite the first edge, and the pins/pads for the individual RF channels on third and fourth edges of the chip. The pins/pads associated with each RF channel may include multiple pins/pads (an “RF group”) and may have a central RF pin/pad with a ground pin/pad on each side of the central RF pin/pad. One or more ground pins/pads may be placed between adjacent RF groups on a given edge of the chip.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 4, 2018
    Inventors: Kristian N. Madsen, Vipul Jain, Amir Esmaili, Chad Cookinham, Noyan Kinayman, Shamsun Nahar, David W. Corman, Nitin Jain
  • Publication number: 20180279140
    Abstract: Providing call continuity for an ongoing call of a User Equipment (UE) of a wireless communication by defining UE behavior specifying actions to be taken by the UE upon detection of occurrence of an event among a plurality of events that may occur during the ongoing call.
    Type: Application
    Filed: January 19, 2018
    Publication date: September 27, 2018
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sathia CHANDRANE, Deepak R., Bharat Vinayak BHAT, Nitin JAIN
  • Publication number: 20180262981
    Abstract: A user equipment (UE) and a method of cell selection by a UE are provided. The method includes maintaining a database for storing a multi-carrier availability status for a plurality of frequencies, wherein each frequency includes at least one of a multi-carrier configuration and a single-carrier configuration; determining whether a candidate cell corresponding to the multi-carrier configuration is available based on the multi-carrier availability status; and selecting the candidate cell corresponding to the multi-carrier configuration when a performance metric of the candidate cell is greater than a pre-defined threshold.
    Type: Application
    Filed: December 21, 2015
    Publication date: September 13, 2018
    Inventors: Nitin Jain, Subhasish Karmakar
  • Patent number: 10075909
    Abstract: A user equipment (UE) and a method of cell selection by a UE are provided. The method includes maintaining a database for storing a multi-carrier availability status for a plurality of frequencies, wherein each frequency includes at least one of a multi-carrier configuration and a single-carrier configuration; determining whether a candidate cell corresponding to the multi-carrier configuration is available based on the multi-carrier availability status; and selecting the candidate cell corresponding to the multi-carrier configuration when a performance metric of the candidate cell is greater than a pre-defined threshold.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: September 11, 2018
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Nitin Jain, Subhasish Karmakar
  • Patent number: 10064175
    Abstract: The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 28, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sudhir Kumar Baghel, Nitin Jain, Venkateswara Rao Manepalli
  • Publication number: 20180234121
    Abstract: In some example implementations, there may be provided methods for beamforming calibration of active electronically steered arrays (AESA). In some implementations, one or more adders may generate a phase offset by adding phase calibration data from non-volatile memory and phase command data from static memory, and/or generate a gain offset by adding gain calibration data from the non-volatile memory and gain command data from the static memory. Further, a phase-shift circuit can modify, based on the phase offset, a phase of a first output signal, and an amplitude gain circuit can modify, based on the gain offset, an amplitude of the first output signal. In accordance with these implementations, the modified phase of the first output signal and the modified amplitude of the first output signal are provided to enable pre-calibration of the first output signal and/or a first antenna. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: January 2, 2018
    Publication date: August 16, 2018
    Inventors: David Warren Corman, Robert McMorrow, Andrew Street, Vipul Jain, Kristian Madsen, Robert Ian Gresham, Jonathan Comeau, Gaurav Menon, Nitin Jain
  • Patent number: 10050824
    Abstract: One embodiment of the present invention provides a computing system. The computing system includes a discovery module, a high-availability management module, and a controlling module. The discovery module determines local switch-specific information associated with a switch based on a discovery response packet. The high-availability management module determines remote switch-specific information about the same switch with respect to a remote computing system. The controlling module determines whether the computing system is to manage the switch based on a metric derived from the local and remote switch-specific information.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: August 14, 2018
    Assignee: ARRIS Enterprises LLC
    Inventor: Nitin Jain
  • Patent number: 10049465
    Abstract: Methods and systems are provided for aligning components of a multi-modality imaging system. In one embodiment, a method comprises performing a plurality of scans of an object with a first modality and a second modality, wherein the object is positioned in a different orientation in each of the plurality of scans, calculating a plurality of alignment parameters of a first modality unit and a second modality unit based on the plurality of scans, and adjusting alignment of the first modality unit and the second modality unit based on the plurality of alignment parameters. In this way, components of a multi-modality imaging system may be accurately aligned using any phantom from which a unique line can be extracted in each modality scan.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 14, 2018
    Assignee: General Electric Company
    Inventors: Nitin Jain, Neelam Sinha, Charles Stearns
  • Publication number: 20180183504
    Abstract: A beamforming integrated circuit has a single channel with a transmit chain and a receive chain. The transmit chain is configured to transmit an output signal and, in a corresponding manner, the receive chain is configured to receive an input signal. The integrated circuit also has separate horizontal and vertical polarity ports, and a double pole, double throw switch operably coupled between the chains and the ports. The double pole, double throw switch is configured to switch between operation in a first mode and a second mode.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Robert J. McMorrow, Vipul Jain, Wade C. Allen, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Nitin Jain
  • Patent number: 9992810
    Abstract: Methods and apparatuses are provided for providing integrity protection in a dual subscriber identity module (SIM) dual standby (DSDS) device. A first message is received on a first SIM of the DSDS device before a radio resource of the DSDS device is tuned away from the first SIM to a second SIM by performing a tune-away procedure. A second message is received after completion of the tune-away procedure. The second message is validated. It is determined whether a first payload of the first message matches a second payload of the second message, when the first message and the second message have a same message sequence number. It is determined that the second message is a duplicate message, when the first payload matches the second payload.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: June 5, 2018
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Ananth Kumar Ramasamy, Bharat Vinayak Bhat, Nitin Jain
  • Publication number: 20180115066
    Abstract: A beamforming integrated circuit system for use in a phased array has a microchip with RF circuitry, and a plurality of (on chip) interfaces electrically connected with the RF circuitry. The plurality of interfaces includes a signal interface, a first ground interface, and a second ground interface. The signal interface is configured to communicate an RF signal, and both the first and second ground interfaces are adjacent to the signal interface. The system also has a material ring circumscribing the plurality of interfaces, and at least one RF ground path coupled with the material ring.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Vipul Jain, Noyan Kinayman, Robert J. McMorrow, Kristian N. Madsen, Shamsun Nahar, Nitin Jain
  • Publication number: 20180115356
    Abstract: A beamforming integrated circuit system for use in a phased array has a microchip with RF circuitry, a bottom surface, and a plurality of interfaces electrically connected with the RF circuitry. The plurality of interfaces includes a plurality of static interfaces and a plurality of RF interfaces. The plurality of static interfaces are on the bottom surface of the microchip and adjacent to each other. The plurality of RF interfaces are also on the bottom surface of the microchip, but radially outward of the plurality of static interfaces. The microchip is configured to be flip chip mounted.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Vipul Jain, Noyan Kinayman, Robert J. McMorrow, Kristian N. Madsen, Shamsun Nahar, Nitin Jain
  • Patent number: 9935781
    Abstract: One embodiment of the present invention provides a computing system. The switch includes a discovery module, a device management module, and a logical group management module. The discovery module constructs a multicast query message for a first multicast group to which the computing system is registered. The device management module extracts information about a remote switch from a query response message from the remote switch and constructs a client database, wherein a first entry in the client database contains the information extracted from the query response message. The logical group management module associates the remote switch with a second multicast group.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 3, 2018
    Assignee: ARRIS ENTERPRISES LLC
    Inventor: Nitin Jain
  • Publication number: 20180062274
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be preprogrammed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Publication number: 20180054005
    Abstract: A laminar phased array has a plurality of receive elements and dual transmit/receive elements supported on a substrate. The plurality of receive elements and dual transmit/receive elements form a patch array across the substrate. As such, the receive elements and dual transmit/receive elements form an array of patch antennas on the substrate. The phased array also has a plurality of integrated circuits supported on the substrate. At least a first set of the plurality of integrated circuits is configured to control receipt of signals by the receive elements. In a corresponding manner, at least a second set of the plurality of integrated circuits is configured to control receipt and transmission of signals by the dual transmit/receive elements.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 22, 2018
    Inventors: Vipul Jain, Nitin Jain, David W. Corman
  • Publication number: 20180054391
    Abstract: Techniques for intelligent designated forwarder (DF) and master router selection (for router redundancy) are provided. In one embodiment, a network router that is part of a set of network routers connected to a common LAN segment can retrieve a priority value adapted for use by the network router in electing a DF for multicast traffic. The network router can further check for the presence or absence of one or more routes to one or more multicast sources in a routing table of the network router. The network router can then modify the priority value based on the presence or the absence of the one or more routes and can transmit a multicast routing protocol control packet including the modified first priority value to one or more other network routers in the set of network routers.
    Type: Application
    Filed: March 31, 2017
    Publication date: February 22, 2018
    Inventors: Nitin Jain, Wing-Keung Adam Yeung
  • Patent number: 9876514
    Abstract: In some example implementations, there may be provided methods for beamforming calibration of active electronically steered arrays (AESA). In some implementations, one or more adders may generate a phase offset by adding phase calibration data from non-volatile memory and phase command data from static memory, and/or generate a gain offset by adding gain calibration data from the non-volatile memory and gain command data from the static memory. Further, a phase-shift circuit can modify, based on the phase offset, a phase of a first output signal, and an amplitude gain circuit can modify, based on the gain offset, an amplitude of the first output signal. In accordance with these implementations, the modified phase of the first output signal and the modified amplitude of the first output signal are provided to enable pre-calibration of the first output signal and/or a first antenna. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 23, 2018
    Assignee: ANOKIWAVE, INC.
    Inventors: David Warren Corman, Robert McMorrow, Andrew Street, Vipul Jain, Kristian Madsen, Robert Ian Gresham, Jonathan Comeau, Gaurav Menon, Nitin Jain
  • Publication number: 20180005400
    Abstract: Methods and systems are provided for aligning components of a multi-modality imaging system. In one embodiment, a method comprises performing a plurality of scans of an object with a first modality and a second modality, wherein the object is positioned in a different orientation in each of the plurality of scans, calculating a plurality of alignment parameters of a first modality unit and a second modality unit based on the plurality of scans, and adjusting alignment of the first modality unit and the second modality unit based on the plurality of alignment parameters. In this way, components of a multi-modality imaging system may be accurately aligned using any phantom from which a unique line can be extracted in each modality scan.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Nitin Jain, Neelam Sinha, Charles Stearns