Patents by Inventor Nitin K. Ingle

Nitin K. Ingle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10319600
    Abstract: Exemplary methods for selectively removing silicon (e.g. polysilicon) from a patterned substrate may include flowing a fluorine-containing precursor into a substrate processing chamber to form plasma effluents. The plasma effluents may remove silicon (e.g. polysilicon, amorphous silicon or single crystal silicon) at significantly higher etch rates compared to exposed silicon oxide, silicon nitride or other dielectrics on the substrate. The methods rely on the temperature of the substrate in combination with some conductivity of the surface to catalyze the etch reaction rather than relying on a gas phase source of energy such as a plasma.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zihui Li, Rui Cheng, Anchuan Wang, Nitin K. Ingle, Abhijit Basu Mallick
  • Patent number: 10297458
    Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: May 21, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
  • Patent number: 10249507
    Abstract: The present disclosure provides methods for etching features in a silicon material includes performing a remote plasma process formed from an etching gas mixture including chlorine containing gas to remove a silicon material disposed on a substrate.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 2, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zihui Li, Xing Zhong, Anchuan Wang, Nitin K. Ingle
  • Patent number: 10233547
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: March 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Publication number: 20190074219
    Abstract: Methods and apparatus to form fully self-aligned vias are described. A seed gapfill layer is formed on a recessed first insulating layers positioned between first conductive lines. Pillars are formed from the seed gapfill layer and a second insulating layer is deposited in the gaps between pillars. The pillars are removed and a third insulating layer is deposited in the gaps in the second insulating layer to form an overburden of third insulating layer. A portion of the overburden of the third insulating layer is removed to expose the first conductive lines and form vias.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 7, 2019
    Inventors: Ying Zhang, Regina Freed, Nitin K. Ingle, Ho-yung Hwang, Uday Mitra
  • Publication number: 20190067103
    Abstract: Methods and apparatus to form fully self-aligned vias are described. Portions of first conductive lines are recessed in a first insulating layer on a substrate. A first metal film is formed in the recessed portions of the first conductive lines and pillars are formed from the first metal film. A second insulating layer is deposited around the pillars. The pillars are removed to form vias in the second insulating layer. A third insulating layer is deposited in the vias and an overburden is formed on the second insulating layer. Portions of the overburden are selectively etched from the second insulating layer to expose the second insulating layer and the filled vias and leaving portions of the third insulating layer on the second insulating layer. The third insulating layer is etched from the filled vias to form a via opening to the first conductive line.
    Type: Application
    Filed: August 29, 2018
    Publication date: February 28, 2019
    Inventors: Ying Zhang, Regina Freed, Nitin K. Ingle, Ho-yung Hwang, Uday Mitra, Abhijit Basu Mallick
  • Patent number: 10204796
    Abstract: The present disclosure provides methods for etching a silicon material in a device structure in semiconductor applications. In one example, a method for etching features in a silicon material includes performing a remote plasma process formed from an etching gas mixture including HF gas without nitrogen etchants to remove a silicon material disposed on a substrate.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 12, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Anchuan Wang, Zihui Li, Mikhail Korolik
  • Publication number: 20190043726
    Abstract: Embodiments of the present technology may include a method of etching. The method may include mixing plasma effluents with a gas in a first section of a chamber to form a first mixture. The method may also include flowing the first mixture to a substrate in a second section of the chamber. The first section and the second section may include nickel plated material. The method may further include reacting the first mixture with the substrate to etch a first layer selectively over a second layer. In addition, the method may include forming a second mixture including products from reacting the first mixture with the substrate.
    Type: Application
    Filed: August 7, 2017
    Publication date: February 7, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Dongqing Yang, Tien Fak Tan, Peter Hillman, Lala Zhu, Nitin K. Ingle, Dmitry Lubomirsky, Christopher Snedigar, Ming Xia
  • Publication number: 20190019690
    Abstract: Processing methods may be performed to limit damage of features of a substrate, such as missing fin damage. The methods may include forming a plasma of an inert precursor within a processing region of a processing chamber. Effluents of the plasma of the inert precursor may be utilized to passivate an exposed region of an oxygen-containing material that extends about a feature formed on a semiconductor substrate. A plasma of a hydrogen-containing precursor may also be formed within the processing region. Effluents of the plasma of the hydrogen-containing precursor may be directed, with DC bias, towards an exposed silicon-containing material on the semiconductor substrate. The methods may also include anisotropically etching the exposed silicon-containing material with the plasma effluents of the hydrogen-containing precursor, where the plasma effluents of the hydrogen-containing precursor selectively etch silicon relative to silicon oxide.
    Type: Application
    Filed: July 17, 2017
    Publication date: January 17, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Tom Choi, Mandar B. Pandit, Mang-Mang Ling, Nitin K. Ingle
  • Publication number: 20190013211
    Abstract: Methods are described herein for etching tantalum-containing films with various potential additives while still retaining other desirable patterned substrate portions. The methods include exposing a tantalum-containing film to a chlorine-containing precursor (e.g. Cl2) with a concurrent plasma. The plasma-excited chlorine-containing precursor selectively etches the tantalum-containing film and other industrially-desirable additives. Chlorine is then removed from the substrate processing region. A hydrogen-containing precursor (e.g. H2) is delivered to the substrate processing region (also with plasma excitation) to produce a relatively even and residue-free tantalum-containing surface. The methods presented remove tantalum while retaining materials elsewhere on the patterned substrate.
    Type: Application
    Filed: May 7, 2018
    Publication date: January 10, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Xikun Wang, Naomi Yoshida, Soumendra N. Barman, Nitin K. Ingle
  • Patent number: 10170336
    Abstract: Embodiments of the present technology may include a method of etching. The method may include flowing a gas through a plasma to form plasma effluents. The method may also include reacting plasma effluents with a first layer defining a first feature. The first feature may include a first sidewall, a second sidewall, and a bottom. The first sidewall, the second sidewall, and the bottom may include the first layer. The first layer may be characterized by a first thickness on the sidewall. The method may further include forming a second layer from the reaction of the plasma effluents with the first layer. The first layer may be replaced by the second layer. The second layer may be characterized by a second thickness. The second thickness may be greater than or equal to the first thickness. The method may also include removing the second layer to expose a third layer.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: January 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zihui Li, Chia-Ling Kao, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20180374750
    Abstract: Methods and apparatus to form fully self-aligned vias are described. First conductive lines are recessed in a first insulating layer on a substrate. A first metal film is formed in the recessed first conductive lines and pillars are formed from the first metal film. Some of the pillars are selectively removed and a second insulating layer is deposited around the remaining pillar. The remaining pillars are removed to form vias in the second insulating layer. A third insulating layer is deposited in the vias and an overburden is formed on the second insulating layer. Portions of the overburden are selectively etched from the second insulating layer to expose the second insulating layer and the filled vias and leaving portions of the third insulating layer on the second insulating layer. The third insulating layer is etched from the filled vias to form a via opening to the first conductive line.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 27, 2018
    Inventors: Ying Zhang, Regina Freed, Nitin K. Ingle, Ho-yung Hwang, Uday Mitra, Abhijit Basu Mallick, Sanjay Natarajan
  • Publication number: 20180286749
    Abstract: A first metallization layer comprising a set of first conductive lines that extend along a first direction on a first insulating layer on a substrate. A second insulating layer is on the first insulating layer. A second metallization layer comprises a set of second conductive lines on a third insulating layer and on the second insulating layer above the first metallization layer. The set of second conductive lines extend along a second direction that crosses the first direction at an angle. A via between the first metallization layer and the second metallization layer. The via is self-aligned along the second direction to one of the first conductive lines.
    Type: Application
    Filed: August 17, 2017
    Publication date: October 4, 2018
    Inventors: Ying Zhang, Abhijit Basu Mallick, Regina Freed, Nitin K. Ingle, Uday Mitra, Ho-Yung Hwang
  • Publication number: 20180254187
    Abstract: In a 3D NAND device, the charge trap region of a memory cell is formed as a separate charge-trap “island.” As a result, the charge-trap region of one memory cell is electrically isolated from charge-trap regions in adjacent memory cells. The charge trap region of one memory cell is separated from the charge trap regions of adjacent memory cells by a dielectric structure, such as a silicon oxide film. Alternatively, the charge trap region of a memory cell is separated from the charge trap regions of adjacent memory cells by an air, gas, or vacuum gap.
    Type: Application
    Filed: April 30, 2018
    Publication date: September 6, 2018
    Inventors: Vinod Robert PURAYATH, Nitin K. INGLE
  • Patent number: 10062578
    Abstract: A method of selectively etching a metal-containing film from a substrate comprising a metal-containing layer and a silicon oxide layer includes flowing a fluorine-containing gas into a plasma generation region of a substrate processing chamber, and applying energy to the fluorine-containing gas to generate a plasma in the plasma generation region. The plasma comprises fluorine radicals and fluorine ions. The method also includes filtering the plasma to provide a reactive gas having a higher concentration of fluorine radicals than fluorine ions, and flowing the reactive gas into a gas reaction region of the substrate processing chamber. The method also includes exposing the substrate to the reactive gas in the gas reaction region of the substrate processing chamber. The reactive gas etches the metal-containing layer at a higher etch rate than the reactive gas etches the silicon oxide layer.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 28, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20180240654
    Abstract: In an embodiment, a plasma source includes a first electrode, configured for transfer of one or more plasma source gases through first perforations therein; an insulator, disposed in contact with the first electrode about a periphery of the first electrode; and a second electrode, disposed with a periphery of the second electrode against the insulator such that the first and second electrodes and the insulator define a plasma generation cavity. The second electrode is configured for movement of plasma products from the plasma generation cavity therethrough toward a process chamber. A power supply provides electrical power across the first and second electrodes to ignite a plasma with the one or more plasma source gases in the plasma generation cavity to produce the plasma products. One of the first electrode, the second electrode and the insulator includes a port that provides an optical signal from the plasma.
    Type: Application
    Filed: April 19, 2018
    Publication date: August 23, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 10026597
    Abstract: The present disclosure provides methods for cleaning chamber components post substrate etching. In one example, a method for cleaning includes activating an etching gas mixture using a plasma to create an activated etching gas mixture, the etching gas mixture comprising hydrogen-containing precursor and a fluorine-containing precursor and delivering the activated etching gas mixture to a processing region of a process chamber, the process chamber having an edge ring positioned therein, the edge ring comprising a catalyst and anticatalytic material, wherein the activated gas removes the anticatalytic material from the edge ring.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: July 17, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chirantha Rodrigo, Jingchun Zhang, Lili Ji, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20180195179
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Application
    Filed: February 19, 2018
    Publication date: July 12, 2018
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Publication number: 20180182777
    Abstract: Embodiments of the present disclosure provide methods for forming features in a film stack. The film stack may be utilized to form stair-like structures with accurate profiles control in manufacturing three dimensional (3D) stacking of semiconductor chips. In one example, a method includes exposing a substrate having a multi-material layer formed thereon to radicals of a remote plasma to form one or more features through the multi-material layer, the one or more features exposing a portion of a top surface of the substrate, and the multi-material layer comprising alternating layers of a first layer and a second layer, wherein the remote plasma is formed from an etching gas mixture comprising a fluorine-containing chemistry, and wherein the process chamber is maintained at a pressure of about 2 Torr to about 20 Torr and a temperature of about ?100° C. to about 100° C.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 28, 2018
    Inventors: Zhenjiang CUI, Hanshen ZHANG, Anchuan WANG, Zhijun CHEN, Nitin K. INGLE
  • Patent number: 9991134
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: June 5, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur