Patents by Inventor Nitin Kumar

Nitin Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8503428
    Abstract: A network device component receives traffic, determines whether the traffic is host bound traffic or non-host bound traffic, and classifies, based on a user-defined classification scheme, the traffic when the traffic is host bound traffic. The network device component also assigns, based on the classification, the classified host bound traffic to a queue associated with network device component for forwarding the classified host bound traffic to a host component of the network device.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: August 6, 2013
    Assignee: Juniper Networks, Inc.
    Inventors: Sandeep Bajaj, Murtuza Attarwala, Nitin Kumar, David Hahm
  • Patent number: 8492189
    Abstract: Embodiments of the current invention include methods of improving a process of forming a textured TCO film by combinatorial methods. The combinatorial method may include depositing a TCO by physical vapor deposition or sputtering, annealing the TCO, and etching the TCO where at least one of the depositing, the annealing, or the etching is performed combinatorially. Embodiments of the current invention also include improved methods of forming the TCO based on the results of combinatorial testing.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: July 23, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Zhi-Wen Sun, Nitin Kumar, Guizhen Zhang, Nikhil Kalyankar, Minh Anh Nguyen
  • Publication number: 20130181627
    Abstract: A ballast for dimming a lamp is provided. The ballast includes an inverter circuit for providing a lamp current for energizing the lamp and a dim interface for receiving an input indicative of a selected lighting level. A control circuit is connected to the dim interface for generating a pulse-width-modulated signal having a duty cycle corresponding to the selected lighting level. A switching network is connected to the control circuit for receiving the pulse-width-modulated signal. The switching network operates between a conductive state and a non-conductive state as a function of the pulse-width-modulated signal. An impedance device is connected across the switching network and is configured for connecting in series with the lamp so that the impedance device receives the lamp current when the switching network is operating in the non-conductive state and the lamp current bypasses the capacitor when the switching network is operating in the conductive state.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Nitin Kumar, Shashank Bakre, Driss Baba
  • Patent number: 8487555
    Abstract: A bi-level lamp ballast to selectively operate two lamps is provided. The ballast includes a control circuit having an input, connected to a switching network, and an output, which provides a particular control signal based on the state of the switching network. The ballast also includes respective lamp control switches, each having respective outputs. The first switch is connected to the output and a ballast power supply. In its first state, it connects the ballast power supply to its first output, and in its second state, it connects the ballast power supply to its second output. The second switch is connected to the output and a ground. In its first state, it connects the ground to its first output, and in its second state, it connects the ground to its second output. The state of each lamp control switch depends on the control signal generated by the control circuit.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: July 16, 2013
    Assignee: Osram Sylvania Inc.
    Inventors: Nitin Kumar, Shashank Bakre
  • Patent number: 8486282
    Abstract: Surface texturing of the transparent conductive oxide (TCO) front contact of a thin film photovoltaic (TFPV) solar cell is needed to enhance the light-trapping capability of the TFPV solar cells and thus improving the solar cell efficiency. Embodiments of the current invention describe chemical formulations and methods for the wet etching of the TCO. The formulations and methods may be optimized to tune the surface texturing of the TCO as desired.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 16, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Zhi-Wen Sun, Nitin Kumar, Guizhen Zhang, Minh Anh Nguyen, Nikhil Kalyankar
  • Patent number: 8476107
    Abstract: Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 2, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Nitin Kumar, Chi-I Lang, Tony Chiang, Zhi-Wen Sun, Jinhong Tong
  • Patent number: 8466003
    Abstract: Embodiments of the current invention describe methods of forming different types of crystalline silicon based solar cells that can be combinatorially varied and evaluated. Examples of these different types of solar cells include front and back contact silicon based solar cells, all-back contact solar cells and selective emitter solar cells. These methodologies all incorporate the formation of site-isolated regions using a combinatorial processing tool and the use of these site-isolated regions to form the solar cell area. Therefore, multiple solar cells may be rapidly formed on a single crystalline silicon substrate for use in combinatorial methodologies. Any of the individual processes of the methods described may be varied combinatorially to test varied process conditions or materials.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: June 18, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Jian Li, James Craig Hunter, Nikhil Kalyankar, Nitin Kumar, Minh Anh Anh Nguyen
  • Publication number: 20130127355
    Abstract: A ballast to energize a lamp is provided. The ballast comprises a buck converter connected to an inverter via a switching component. The buck converter includes a transistor, a capacitor, a diode, and an inductor. The switching component has a predetermined breakover voltage value and is configured to provide a start up signal to the inverter when voltage at the switching component increases to the predetermined breakover voltage value. A control circuit is configured to monitor the voltage at the switching component while the voltage at the switching component increases to the predetermined breakover voltage, and is configured to generate a gate drive pulse at a gate terminal of the transistor when the voltage at the switching component reaches a predetermined voltage that is less than the breakover voltage of the switching component.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Nitin Kumar, Shashank Bakre, Markus Ziegler
  • Publication number: 20130111587
    Abstract: The subject disclosure is directed towards detecting software vulnerabilities in an isolated computing environment. In order to evaluate each input submission from an external computer, a plurality of tasks are automatically generated for execution on one or more computing units running within the isolated computing environment. Various configurations of the one or more computing units are defined in which each computing unit executes the plurality of tasks. A report is produced comprising results associated with such an execution.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicant: MICROSOFT CORPORATION
    Inventors: Nitin Kumar Goel, Kenneth D. Johnson, Matthew Ryan Miller, Navin Narayan Pai, Grzegorz M. Wroblewski, Gregory Justice Riggs
  • Publication number: 20130099664
    Abstract: A electrodeless lamp including a fluorescent discharge vessel, a tip, an amalgam, a lamp core, and a heater. The vessel contains a gas having a partial vapor pressure and a fluorescent material. The tip has an inner end engaging the vessel, and an opening in communication with the gas. The amalgam is positioned within the opening, in heat transfer relation with the tip. When the temperature of the amalgam decreases, mercury vapor in the gas condensates onto the amalgam, causing a decrease in the partial vapor pressure of the gas. The opposite occurs when the amalgam temperature increases. The lamp core generates a magnetic flux, causing an electrical discharge in the gas. The heater includes a positive temperature coefficient connected to a winding of the lamp core. The heater is in heat transfer relation with the tip and heats the tip when the electrodeless lamp is in a dimming mode.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Nitin Kumar, Robert Martin, Shashank Bakre
  • Patent number: 8426970
    Abstract: Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 23, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Zachary Fresco, Chi-I Lang, Sandra G. Malhotra, Tony P. Chiang, Thomas R. Boussie, Nitin Kumar, Jinhong Tong, Anh Duong
  • Patent number: 8417998
    Abstract: Technologies are described herein for performing targeted, black-box fuzzing of input data for application testing. A dataflow tracing module traces an application while it reads and processes a set of template data to produce operation mapping data that maps data locations in the template data to operations performed by the application in processing the data at the location. The tracing is performed without requiring the application source code, knowledge of the syntactical structure of the input data, or specially instrumented binaries for the application. A fuzzing module is then utilized to target a specific operation or operations in the application by fuzzing data locations within the template data according to the operation mapping data until the desired outcome is achieved.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 9, 2013
    Assignee: Microsoft Corporation
    Inventors: Gavin Shane Thomas, Nitin Kumar Goel, Mark Wodrich
  • Patent number: 8410713
    Abstract: A lamp driver circuit to selectively energize one or more lamps is provided. The inverter circuit has a transformer with primary and secondary windings to provide voltage to the lamps. A filter is connected to the primary winding to receive a primary winding signal representative of the voltage across the primary winding. The primary winding signal has a frequency spectrum and the filter detects a particular characteristic of the frequency spectrum that is indicative of an end of life (EOL) condition of the one or more lamps. A control circuit is connected to the inverter circuit and to the filter. The control circuit is configured to discontinue energizing of the one or more lamps by the inverter circuit when the particular characteristic of the frequency spectrum of the primary winding signal is detected by the filter.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: April 2, 2013
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Nitin Kumar, Shashank Bakre, Christian Breuer
  • Patent number: 8395547
    Abstract: A mobile computing device comprises a wireless transceiver and a processing circuit. The processing circuit is configured to store a data set for a predetermined location, the data set comprising location data and a location name. The processing circuit is further configured to compare a current location to the location data, to compare an updated location to the location data at a time calculated based on heuristic data, and to generate a notification message based on the mobile computing device arriving at or near the predetermined location.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: March 12, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Adil Dhanani, Neeta Srivastava, Nitin Kumar, Janell Paulson, Thomas Fong
  • Publication number: 20130057172
    Abstract: A three light level electronic ballast, and methods of operating lamps at three light levels, are provided. The ballast includes a rectifier, a power factor correction circuit, an inverter circuit, a first circuit, a second circuit, and a control circuit. The rectifier receives an AC voltage signal and produces a rectified voltage signal, which the power factor correction circuit receives and uses to provide a corrected voltage signal. The inverter circuit receives the corrected voltage signal and provides an energizing signal to power at least two lamps. The first circuit selectively reduces the current applied to the lamps by the energizing signal. The second circuit selectively prevents the second lamp from being energized by the energizing signal. The control circuit controls the first circuit and the second circuit.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Nitin Kumar, Shashank Bakre, Driss Baba, Thomas Schalton
  • Publication number: 20130034722
    Abstract: Durable porous low refractive index coatings, methods and compositions for forming the porous low refractive index coatings are provided. The method comprises coating a substrate with a sol formulation comprising a silane-based binder having one or more reactive groups and silica based nanoparticles and annealing the coated substrate. The silane-based binder comprises from about 30 wt. % to about 70 wt. % ash contribution in the total ash content of the sol formulation. Porous coatings formed according to the embodiments described herein demonstrate good optical properties (e.g., a low refractive index) while maintaining good mechanical durability due to the presence of a high amount of binder and a closed pore structure.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Nikhil D. Kalyankar, Nitin Kumar
  • Publication number: 20130034653
    Abstract: Methods and compositions for forming durable porous low refractive index coatings on substrates are provided. In one embodiment, a method of forming a porous coating on a substrate is provided. The method comprises coating a substrate with a sol-formulation comprising a silane-based binder, silica-based nanoparticles, and an inter-particle interaction modifier for regulating interactions between the silica-based nanoparticles and annealing the coated substrate. Porous coatings formed according to the embodiments described herein demonstrate good optical properties (e.g., a low refractive index) while maintaining good mechanical durability due to the presence of the inter-particle interaction modifier. The inter-particle interaction modifier increases the strength of the particle network countering capillary forces produced during drying to maintain the porosity structure.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Nitin Kumar, Nikhil D. Kalyankar, Zhi-Wen Sun
  • Patent number: 8344375
    Abstract: Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: January 1, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Nitin Kumar, Tony Chiang, Chi-I Lang, Prashant B Phatak, Jinhong Tong
  • Publication number: 20120326609
    Abstract: A ballast that selectively operates multiple lamps is provided. The ballast includes a switching network, capable of operating in a number of switching configurations. The ballast also includes a control circuit, and two lamp control switches. The control circuit is connected to the switching network, and provides respective control signals via respective output terminals as a function of the switching configuration of the switching network. Each lamp control switch is in parallel with its lamp and is connected to a respective output terminal. The first lamp control switch is connected to a ballast power supply, and either provides power to the first lamp or does not, depending on the first control signal. The second lamp control switch is connected to the first lamp control switch and to ground, and either provides power to the second lamp or does not, depending on the second control signal.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Nitin Kumar, Shashank Bakre, Thomas J. Schalton
  • Publication number: 20120313538
    Abstract: A ballast to energize a lamp at a selected lighting level is provided. The ballast includes a rectifier, a buck converter, and a controller. The rectifier produces a DC voltage with a substantially constant magnitude. The buck converter generates a lamp voltage output from the DC voltage based on a duty cycle. The output has a magnitude that is varied based on the duty cycle to energize the lamp at a selected lighting level. The controller receives a dim input signal indicating the selected lighting level, and provides an appropriate control signal to the buck converter. The appropriate control signal indicates a particular duty cycle corresponding to magnitude of the output to produce the selected lighting level. In response to receiving the control signal, the buck converter adjusts the duty cycle accordingly, producing the output having the magnitude to energize the lamp at the selected lighting level.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Nitin Kumar, Markus Ziegler, Shashank Bakre