Patents by Inventor Nobuaki Nagao

Nobuaki Nagao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835840
    Abstract: An optical scanning device includes: a first waveguide that propagates light by total reflection; and a second waveguide. The second waveguide includes: a first multilayer reflective film; a second multilayer reflective film that faces the first multilayer reflective film; and a first optical waveguide layer directly connected to the first waveguide and located between the first and second multilayer reflective films. The first optical waveguide layer has a variable thickness and/or a variable refractive index and propagates the light transmitted through the first waveguide. The first multilayer reflective film has a higher light transmittance than the second multilayer reflective film and allows part of the light propagating through the first optical waveguide layer to be emitted to the outside. By changing the thickness of the first optical waveguide layer and/or its refractive index, the direction of the part of the light emitted from the second waveguide is changed.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: December 5, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Hashiya, Yasuhisa Inada, Taku Hirasawa, Yoshikazu Yamaoka, Nobuaki Nagao
  • Patent number: 11644540
    Abstract: An optical scanning device includes: first and second mirrors; an optical waveguide layer disposed between the first and second mirrors; a pair of electrodes sandwiching the optical waveguide layer; and a driving circuit that applies a voltage to the pair of electrodes. The first mirror emits part of light propagating through the optical waveguide layer to the outside. The optical waveguide layer contains a liquid crystal material or an electrooptical material. The alignment direction of the liquid crystal material or the direction of a polarization axis of the electrooptical material is parallel or perpendicular to the direction in which the optical waveguide layer extends. The driving circuit applies the voltage to the pair of electrodes to change the refractive index of the liquid crystal material or the electrooptical material to thereby change the light emission direction.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: May 9, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Nobuaki Nagao, Yoshikazu Yamaoka, Yasuhisa Inada, Akira Hashiya, Taku Hirasawa
  • Patent number: 11474036
    Abstract: Provided is a flocculation state monitoring sensor with which blockage of an ejecting part which ejects a gas towards a light emitting part and a light receiving part can be prevented, and which performs stable monitoring. A flocculation state monitoring sensor comprising: a light emitting part which irradiates laser light towards a measuring region which measures a flocculation state; and a light receiving part which receives light scattered along a direction which intersects with a direction along an optical axis of said light emitting part, wherein the light emitting part and the light receiving part are cleaned by air being ejected from nozzles theretowards. A small amount of air is provided to the nozzles between cleaning periods to purge floc, etc.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: October 18, 2022
    Assignee: KURITA WATER INDUSTRIES LTD.
    Inventor: Nobuaki Nagao
  • Publication number: 20220276215
    Abstract: A water sampling device for water quality measurement is capable of changing the sampling amount, the number of sampling container(s), the sampling container type and so on according to the item of water quality measurement. Water in a water system can be sampled into a first container Y1 via a sampling source pipe 1, a manifold 2, and a first sampling pipe 3 and a pump P1 connected to the manifold 2. Water in the water system also can be sampled into a second container Y2 from the manifold 2 via a second sampling pipe 4 and a pump P2. In a case where the detection value(s) of one or more of the sensors S1 to S3 set in the water system exceeds a preset standard value or deviates from a standard range, water to be tested is sampled from the water system.
    Type: Application
    Filed: September 2, 2020
    Publication date: September 1, 2022
    Applicant: KURITA WATER INDUSTRIES LTD.
    Inventor: Nobuaki NAGAO
  • Publication number: 20220137480
    Abstract: An optical scanning device includes: a first waveguide that propagates light by total reflection; and a second waveguide. The second waveguide includes: a first multilayer reflective film; a second multilayer reflective film that faces the first multilayer reflective film; and a first optical waveguide layer directly connected to the first waveguide and located between the first and second multilayer reflective films. The first optical waveguide layer has a variable thickness and/or a variable refractive index and propagates the light transmitted through the first waveguide. The first multilayer reflective film has a higher light transmittance than the second multilayer reflective film and allows part of the light propagating through the first optical waveguide layer to be emitted to the outside. By changing the thickness of the first optical waveguide layer and/or its refractive index, the direction of the part of the light emitted from the second waveguide is changed.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 5, 2022
    Inventors: Akira Hashiya, Yasuhisa Inada, Taku Hirasawa, Yoshikazu Yamaoka, Nobuaki Nagao
  • Patent number: 11256156
    Abstract: An optical scanning device includes: a first waveguide that propagates light by total reflection; and a second waveguide. The second waveguide includes: a first multilayer reflective film; a second multilayer reflective film that faces the first multilayer reflective film; and a first optical waveguide layer directly connected to the first waveguide and located between the first and second multilayer reflective films. The first optical waveguide layer has a variable thickness and/or a variable refractive index and propagates the light transmitted through the first waveguide. The first multilayer reflective film has a higher light transmittance than the second multilayer reflective film and allows part of the light propagating through the first optical waveguide layer to be emitted to the outside. By changing the thickness of the first optical waveguide layer and/or its refractive index, the direction of the part of the light emitted from the second waveguide is changed.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 22, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Hashiya, Yasuhisa Inada, Taku Hirasawa, Yoshikazu Yamaoka, Nobuaki Nagao
  • Patent number: 11168251
    Abstract: A phosphor includes a crystal phase with a chemical composition (LuxY1-x)yM3-y-zCez?p?q. M denotes one or more elements selected from the group consisting of La, Sc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. ? contains Si, which constitutes 90% or more by mole of ?. ? contains N, which constitutes 90% or more by mole of ?. The variables x, y, z, p, and q satisfy 0<x?1, 1.5?y?3?z, 0<z?0.6, 5.5?p?6.5, and 10.5?q?11.5. The phosphor has an emission spectrum peak at a wavelength in the range of not less than 600 nm and not more than 680 nm.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: November 9, 2021
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Nobuaki Nagao, Mitsuru Nitta
  • Patent number: 11149198
    Abstract: A fiber light source includes a solid-state light source, a wavelength convertor, and an optical fiber. The solid-state light source is configured to emit first light, the first light including blue light with a peak wavelength in a range of 430 to 470 nm, inclusive, and green light with a peak wavelength in a range of 480 to 550 nm, inclusive. The wavelength convertor is disposed on the light output side or the light incident side of the optical fiber and contains a red phosphor. The red phosphor includes Ce as a luminescent center, and is excited by at least part of the green light to emit second light. The second light has a spectrum with a peak wavelength in a range of 600 to 700 nm, inclusive. The red phosphor contains a nitride or an oxynitride as a host material.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: October 19, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Nobuaki Nagao, Mitsuru Nitta, Yasuhisa Inada
  • Publication number: 20210262933
    Abstract: Provided is a flocculation state monitoring sensor with which blockage of an ejecting part which ejects a gas towards a light emitting part and a light receiving part can be prevented, and which performs stable monitoring. A flocculation state monitoring sensor comprising: a light emitting part which irradiates laser light towards a measuring region which measures a flocculation state; and a light receiving part which receives light scattered along a direction which intersects with a direction along an optical axis of said light emitting part, wherein the light emitting part and the light receiving part are cleaned by air being ejected from nozzles theretowards. A small amount of air is provided to the nozzles between cleaning periods to purge floc, etc.
    Type: Application
    Filed: August 9, 2019
    Publication date: August 26, 2021
    Applicant: Kurita Water Industries Ltd.
    Inventor: Nobuaki NAGAO
  • Patent number: 11036120
    Abstract: A projector includes a light source unit, a spatial light modulator configured to control light from the light source unit for each pixel to form an optical image, and a projection optical system configured to project the optical image formed by the spatial light modulator onto a target. The light source unit includes a solid-state light source and a wavelength convertor. The solid-state light source is configured to emit first light, the first light including blue light with a peak wavelength in a range of 430 to 470 nm, inclusive, and green light with a peak wavelength in a range of 480 to 550 nm, inclusive. The wavelength convertor contains a red phosphor including Ce as a luminescent center that is configured to emit second light upon receiving the green light. The second light has a spectrum with a peak wavelength of 600 to 700 nm, inclusive. The red phosphor contains a nitride or an oxynitride as a host material.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: June 15, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Nobuaki Nagao, Mitsuru Nitta, Yasuhisa Inada
  • Patent number: 11001753
    Abstract: A phosphor comprises a crystal phase that has a chemical composition of (Y1-x-y,Cex,Lay)?Si?-zAlzN?O, where the ? satisfies 5.5???6.5, the ? satisfies 9.5???12.5, the ? satisfies 17.5???22.5, the x satisfies 0<x?0.1, the y satisfies 0?y?0.4, and the z satisfies 0?z?0.5. A light emission spectrum of the phosphor includes a peak within a wavelength range of not less than 600 nm and not more than 660 nm.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: May 11, 2021
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Mitsuru Nitta, Nobuaki Nagao
  • Patent number: 10955114
    Abstract: The phosphor according to an aspect of the present disclosure contains a crystal phase having a chemical composition CexYyLa3-x-ySi6N11, where x and y satisfy 0<x?0.6, and (1.5?x)?y?(3?x). The phosphor has an emission spectral peak within a wavelength range of 600 nm or more and 660 nm or less and a first excitation spectral peak within a wavelength range of 480 nm or more and 550 nm or less.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: March 23, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Nobuaki Nagao, Mitsuru Nitta, Yasuhisa Inada
  • Publication number: 20210033787
    Abstract: An optical scanning device includes a waveguide array including a plurality of waveguides arranged in a first direction. Each waveguide includes: an optical waveguide layer that propagates light supplied to the waveguide in a second direction intersecting the first direction; a first mirror having a first reflecting surface intersecting a third direction; and a second mirror having a second reflecting surface that faces the first reflecting surface. The optical waveguide layer is located between the first and second mirrors and has a variable thickness and/or a variable refractive index for the light. The width of the first mirror and the width of the second mirror are each larger than the width of the optical waveguide layer. The first mirror has a higher light transmittance than the second mirror and allows part of the light propagating through the optical waveguide layer to be emitted in the third direction.
    Type: Application
    Filed: October 20, 2020
    Publication date: February 4, 2021
    Inventors: Akira HASHIYA, Yasuhisa INADA, Taku HIRASAWA, Yoshikazu YAMAOKA, Nobuaki NAGAO
  • Patent number: 10877215
    Abstract: An optical scanning device includes a waveguide array including a plurality of waveguides arranged in a first direction. Each waveguide includes: an optical waveguide layer that propagates light supplied to the waveguide in a second direction intersecting the first direction; a first mirror having a first reflecting surface intersecting a third direction; and a second mirror having a second reflecting surface that faces the first reflecting surface. The optical waveguide layer is located between the first and second mirrors and has a variable thickness and/or a variable refractive index for the light. The width of the first mirror and the width of the second mirror are each larger than the width of the optical waveguide layer. The first mirror has a higher light transmittance than the second mirror and allows part of the light propagating through the optical waveguide layer to be emitted in the third direction.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: December 29, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Akira Hashiya, Yasuhisa Inada, Taku Hirasawa, Yoshikazu Yamaoka, Nobuaki Nagao
  • Patent number: 10717657
    Abstract: A phosphor contains a crystal phase having a chemical composition CexM3-x-y?6?11-z. M is one or more elements selected from the group consisting of Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. ? contains Si in an amount of 50 mol % or more of a total mol of ?. ? further contains Al. ? contains N in an amount of 80 mol % or more N of a total mol of ?. x satisfies 0<x?0.6. y satisfies 0?y?1.0. z satisfies 0?z?1.0.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: July 21, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Mitsuru Nitta, Yasuhisa Inada, Nobuaki Nagao
  • Patent number: 10714661
    Abstract: A light-emitting apparatus includes: a solid-state light source; and a wavelength convertor. The solid-state light source emits first light including green light with a peak wavelength in a range of 480 to 550 nm, inclusive. The wavelength convertor contains a red phosphor including Ce as a luminescent center. The red phosphor is excited by at least part of the green light to emit second light. The second light has a spectrum with a peak wavelength in a range of 600 to 700 nm, inclusive. The red phosphor contains a nitride or an oxynitride as a host material.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: July 14, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Mitsuru Nitta, Nobuaki Nagao, Yasuhisa Inada
  • Patent number: 10662376
    Abstract: A phosphor comprises a crystal phase with a chemical composition (Lu1-p-q, Cep, Mq)x?y?zO. M denotes one or more elements selected from the group consisting of Y, La, Sc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. ? contains Si, which constitutes 90% or more by mole of ?. ? contains N, which constitutes 90% or more by mole of ?. The variables x, y, z, p, and q satisfy 5.5?x?6.5, 10.5?y?11.5, 19.5?z?20.5, 0<p<0.03, and 0?q?0.5.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: May 26, 2020
    Assignee: Panasonic Intellectual Property Managment Co., Ltd.
    Inventors: Mitsuru Nitta, Nobuaki Nagao, Yasuhisa Inada
  • Patent number: 10570034
    Abstract: A flocculation monitoring apparatus and a flocculation monitoring method are provided, and the flocculation monitoring apparatus and the flocculation monitoring method are capable of stably measuring a flocculation state of water to be treated even when the number (density) of flocs has increased. A measurement-light applying part (laser-light applying part 10) applies a measurement light to a measurement region (18) in the water to be treated (8) and a scattered-light receiving part (12) receives a scattered light due to particles of the water to be treated. A measurement value arithmetic part (arithmetic circuit 48) calculates an index related to flocculation of the water to be treated, by using an amplitude of a light reception signal acquired in the scattered-light receiving part.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: February 25, 2020
    Assignee: KURITA WATER INDUSTRIES LTD.
    Inventors: Nobuaki Nagao, Yasuhiro Mugibayashi
  • Publication number: 20200003873
    Abstract: An optical scanning device includes: first and second mirrors; an optical waveguide layer disposed between the first and second mirrors; a pair of electrodes sandwiching the optical waveguide layer; and a driving circuit that applies a voltage to the pair of electrodes. The first mirror has a higher light transmittance than the second mirror and emits part of light propagating through the optical waveguide layer to the outside. The optical waveguide layer contains a liquid crystal material or an electrooptical material. The alignment direction of the liquid crystal material or the direction of a polarization axis of the electrooptical material is parallel or perpendicular to the direction in which the optical waveguide layer extends. The driving circuit applies the voltage to the pair of electrodes to change the refractive index of the liquid crystal material or the electrooptical material to thereby change the light emission direction.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: NOBUAKI NAGAO, YOSHIKAZU YAMAOKA, YASUHISA INADA, AKIRA HASHIYA, TAKU HIRASAWA
  • Patent number: RE49093
    Abstract: A light-emitting apparatus includes; a light-emitting device including a photoluminescent layer that receives excitation light and emits light including first light having a wavelength ?a in air, and a light-transmissive layer located on or near the photoluminescent layer; and an optical fiber that receives the light from the photoluminescent layer at one end of the optical fiber and emits the received light from the other end thereof. A surface structure is defined on at least one of the photoluminescent layer and the light-transmissive layer, and the surface structure has projections or recesses or both and limits a directional angle of the first light having the wavelength ?a in air.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: June 7, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Nobuaki Nagao, Taku Hirasawa, Yasuhisa Inada, Mitsuru Nitta, Akira Hashiya, Yasuhiko Adachi