Patents by Inventor Nobuhide Yamada

Nobuhide Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110212255
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: December 3, 2007
    Publication date: September 1, 2011
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 8008190
    Abstract: Disclosed is a method of manufacturing a semiconductor device which includes: providing an insulating film formed above a semiconductor substrate with a processed portion; supplying a surface of the processed portion of the insulating film with a primary reactant from a reaction of a raw material including at least a Si-containing compound; and subjecting the primary reactant to dehydration condensation to form a silicon oxide film on the surface of the processed portion.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuhide Yamada, Hideto Matsuyama, Hideshi Miyajima
  • Patent number: 7999356
    Abstract: According to one aspect of the present invention, there is provided a composition for film formation, comprising a compound represented by general formula (I) or a hydrolyzed-dehydrocondensation product thereof: X13-mR1mSiR2SiR3nX23-n??(I) wherein R1 and R3 represent a hydrogen atom or a monovalent substituent; R2 represents a divalent group having an alicyclic structure with four carbon atoms or a derivative of the divalent group; X1 and X2 represent a hydrolysable group; and m and n are an integer of from 0 to 2.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasushi Nakasaki, Nobuhide Yamada, Miyoko Shimada, Hideshi Miyajima, Kei Watanabe
  • Patent number: 7902036
    Abstract: A method of fabricating a semiconductor device includes forming trench-like recesses in a semiconductor substrate, the recesses including one or more recesses each of which has an opening width of not more than a predetermined value, forming a first insulating film above the substrate after the recesses have been formed, so that one or a plurality of voids are formed in the one or more recesses whose opening widths are not more than the predetermined value, removing part of the first insulating film so that a beam is left which spans the openings so that the beam passes over upper surfaces of the one or more recesses and so that at least the voids are exposed in a portion of the substrate except the beam, and filling the voids in the recesses with a material with fluidity, thereby forming second insulating films in the recesses.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: March 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Nobuhide Yamada
  • Publication number: 20110008545
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: September 20, 2010
    Publication date: January 13, 2011
    Inventors: Shinichi ITO, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 7799368
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: September 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 7785984
    Abstract: A manufacturing method for a semiconductor device includes generating on a substrate liquid-phase silanol having fluidity by causing a source gas made of a material containing silicon to react with a source gas made of a material containing oxygen, introducing the silanol into a first recess having an aspect ratio of a predetermined value wholly, and introducing the silanol into a space from a bottom to an intermediate portion in a second recess having an aspect ratio lower than the predetermined value, the first and second recesses are provided in the substrate, burying a silicon oxide film in the first recess and providing the silicon oxide film in the second recess by converting the silanol into the silicon oxide film by dehydrating condensation, and providing a dielectric film having film density higher than that of the silicon oxide film on the silicon oxide film.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuhide Yamada, Rempei Nakata
  • Publication number: 20100155791
    Abstract: A method of fabricating a semiconductor device includes forming trench-like recesses in a semiconductor substrate, the recesses including one or more recesses each of which has an opening width of not more than a predetermined value, forming a first insulating film above the substrate after the recesses have been formed, so that one or a plurality of voids are formed in the one or more recesses whose opening widths are not more than the predetermined value, removing part of the first insulating film so that a beam is left which spans the openings so that the beam passes over upper surfaces of the one or more recesses and so that at least the voids are exposed in a portion of the substrate except the beam, and filling the voids in the recesses with a material with fluidity, thereby forming second insulating films in the recesses.
    Type: Application
    Filed: June 16, 2009
    Publication date: June 24, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Nobuhide YAMADA
  • Publication number: 20100072581
    Abstract: According to one aspect of the present invention, there is provided a composition for film formation, comprising a compound represented by general formula (I) or a hydrolyzed-dehydrocondensation product thereof: X13-mR1mSiR2SiR3nX23-n??(I) wherein R1 and R3 represent a hydrogen atom or a monovalent substituent; R2 represents a divalent group having an alicyclic structure with four carbon atoms or a derivative of the divalent group; X1 and X2 represent a hydrolysable group; and m and n are an integer of from 0 to 2.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 25, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasushi Nakasaki, Nobuhide Yamada, Miyoko Shimada, Hideshi Miyajima, Kei Watanabe
  • Patent number: 7604832
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: October 20, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20080318408
    Abstract: Disclosed is a method of manufacturing a semiconductor device which includes: providing an insulating film formed above a semiconductor substrate with a processed portion; supplying a surface of the processed portion of the insulating film with a primary reactant from a reaction of a raw material including at least a Si-containing compound; and subjecting the primary reactant to dehydration condensation to form a silicon oxide film on the surface of the processed portion.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 25, 2008
    Inventors: Nobuhide YAMADA, Hideto Matsuyama, Hideshi Miyajima
  • Publication number: 20080090001
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: December 3, 2007
    Publication date: April 17, 2008
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20080009143
    Abstract: Disclosed is a method of forming a silicon oxide layer comprising: supplying at least a gas containing Si as a raw gas to a semiconductor substrate having a recess formed on its surface to form a primary reactant on the surface, then performing dehydration condensation to form a silicon oxide layer above the semiconductor substrate; removing a part of the silicon oxide layer until a portion of the silicon oxide layer formed in the recess that has a lower density than the silicon oxide layer formed in a vicinity of the surface is at least partially exposed; and supplying a gas containing Si to the silicon oxide layer having a lower density.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 10, 2008
    Inventors: Nobuhide Yamada, Rempei Nakata, Yukio Nishiyama
  • Publication number: 20080003775
    Abstract: A manufacturing method for a semiconductor device includes generating on a substrate liquid-phase silanol having fluidity by causing a source gas made of a material containing silicon to react with a source gas made of a material containing oxygen, introducing the silanol into a first recess having an aspect ratio of a predetermined value wholly, and introducing the silanol into a space from a bottom to an intermediate portion in a second recess having an aspect ratio lower than the predetermined value, the first and second recesses are provided in the substrate, burying a silicon oxide film in the first recess and providing the silicon oxide film in the second recess by converting the silanol into the silicon oxide film by dehydrating condensation, and providing a dielectric film having film density higher than that of the silicon oxide film on the silicon oxide film.
    Type: Application
    Filed: June 19, 2007
    Publication date: January 3, 2008
    Inventors: Nobuhide Yamada, Rempei Nakata
  • Patent number: 7312018
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N)
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 25, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20050022732
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N).
    Type: Application
    Filed: August 27, 2004
    Publication date: February 3, 2005
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Publication number: 20050026456
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10?5 q? (mm) given with respect to a surface tension ? (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10?5 (m·sec/N)
    Type: Application
    Filed: August 27, 2004
    Publication date: February 3, 2005
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 6800569
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10−5 q&ggr; (mm) given with respect to a surface tension &ggr; (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10−5 (m·sec/N).
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: October 5, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura
  • Patent number: 6737363
    Abstract: A method of manufacturing a semiconductor device according to an aspect of the present invention comprises forming a low dielectric constant insulating film having a siloxane bond as main skeleton on a semiconductor substrate, causing a surfactant to permeate the low dielectric constant insulating film, and conducting a predetermined step on the low dielectric constant insulating film permeated with the surfactant in a state adapted to be exposed to water.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: May 18, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideshi Miyajima, Nobuhide Yamada, Nobuo Hayasaka, Nobuyuki Kurashima
  • Publication number: 20030211756
    Abstract: There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10−5 q&ggr; (mm) given with respect to a surface tension &ggr; (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10−5 (m·sec/N).
    Type: Application
    Filed: January 29, 2003
    Publication date: November 13, 2003
    Inventors: Shinichi Ito, Tatsuhiko Ema, Kei Hayasaki, Rempei Nakata, Nobuhide Yamada, Katsuya Okumura