Patents by Inventor Nobuo Ando

Nobuo Ando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220320482
    Abstract: The power storage device comprises an electrode assembly including a positive electrode, a separator, and a negative electrode, and an electrolyte solution. The negative electrode comprises a negative electrode current collector and a negative electrode active material layer. The active material layer comprises a surplus region A not facing the positive electrode active material layer, an end region B facing a region in the positive electrode active material layer, the region extending from an end of the positive electrode active material layer toward a center of the positive electrode active material layer by a length of 5% of a length from the center to the end, and a center region C. A negative electrode potential VA and a negative electrode potential VC after the positive electrode and the negative electrode are short-circuited satisfy Formulas below: (1): VA?2.0 V, (2): VC?1.0 V, (3): VA/VC?0.7.
    Type: Application
    Filed: February 26, 2020
    Publication date: October 6, 2022
    Applicant: Musashi Energy Solutions Co., Ltd.
    Inventors: Hiroyuki MIYAUCHI, Nobuo ANDO
  • Patent number: 11456447
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions. The predoping method for a negative electrode active material includes: a predoping process and a post-doping modification process. In the predoping process, the negative electrode active material is doped with lithium ions, to thereby reduce a potential of the negative electrode active material relative to lithium metal. In the post-doping modification process, after the predoping process, reaction is caused between a reactive compound that is reactive with lithium ions and lithium ions doped into the negative electrode active material, to thereby increase the potential of the negative electrode active material relative to lithium metal. The potential of the negative electrode active material relative to lithium metal is 0.8 V or more at completion of the post-doping modification process.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 27, 2022
    Assignees: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro Doi, Yuki Kusachi, Noboru Yamauchi, Tomohiro Kaburagi, Hideaki Horie, Yusuke Nakashima, Kazuya Tsuchida, Naofumi Shoji, Koji Sumiya, Shigehito Asano, Yasuyuki Koga, Nobuo Ando, Terukazu Kokubo
  • Publication number: 20220302434
    Abstract: A doped electrode is manufactured by an electrode manufacturing method. The doped electrode includes an active material doped with an alkali metal. In the electrode manufacturing method, a dope solution is brought into contact with an electrode. The electrode includes a current collector and an active material layer. The active material layer is formed on a surface of the current collector and includes the active material. The dope solution includes an alkali metal ion and flows. In the electrode manufacturing method, for example, the alkali metal is electrically doped to the active material using a counter electrode member arranged to face the electrode.
    Type: Application
    Filed: June 25, 2020
    Publication date: September 22, 2022
    Applicant: MUSASHI ENERGY SOLUTIONS CO., LTD.
    Inventors: Hirobumi SUZUKI, Kenji KOJIMA, Masaya NAOI, Nobuo ANDO, Hiroki YAKUSHIJI, Kazunari AITA, Masahiro YAMAMOTO
  • Publication number: 20210175546
    Abstract: A non-aqueous electrolyte secondary battery has a power generating element that includes a positive electrode in which a positive electrode active material layer including a positive electrode active material is formed on a surface of a positive electrode current collector, a negative electrode in which a negative electrode active material layer including a negative electrode active material is formed on a surface of a negative electrode current collector, and a separator impregnated with an electrolyte solution. The negative electrode active material includes a Si material that contains silicon and is capable of insertion and removal of lithium ions. The electrolyte solution contains lithium bis(fluorosulfonyl)imide (LiFSI) and an inorganic lithium salt other than the LiFSI, and has a feature that a ratio of a concentration (mol/L) of the LiFSI with respect to a concentration (mol/L) of the inorganic lithium salt (LiFSI/inorganic lithium salt) in the electrolyte solution is 1 or less.
    Type: Application
    Filed: April 9, 2019
    Publication date: June 10, 2021
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Shotaro DOI, Noboru YAMAUCHI, Yuki KUSACHI, Hajime SATOU, Hideaki HORIE, Yusuke NAKASHIMA, Naofumi SHOJI, Kazuya TSUCHIDA, Koji SUMIYA, Takumi HATAZOE, Shigehito ASANO, Nobuo ANDO
  • Publication number: 20210159484
    Abstract: A lithium ion rechargeable battery includes an electrode assembly and an electrolyte solution. A negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on a surface of the negative electrode. The negative electrode is doped with lithium. An aperture ratio of the negative electrode current collector is 0% or higher and 0.1% or lower. A discharge capacity ratio X, which is defined by Formula (1): X=C1/C2, is greater than 0, and 0.9 or less. C1 in the Formula (1) is a discharge capacity of a cell when the cell is charged and discharged at a cell voltage between 2.0 V and 4.3 V. C2 in the Formula (1) is a discharge capacity of the negative electrode when the negative electrode is charged and discharged between 0V vs. Li/Li+ and 3V vs. Li/Li+.
    Type: Application
    Filed: April 18, 2019
    Publication date: May 27, 2021
    Applicant: MUSASHI ENERGY SOLUTIONS CO., LTD.
    Inventors: Hiroki YAKUSHIJI, Kazunari AITA, Tomohiro UTAKA, Masaya NAOI, Kenji KOJIMA, Norihiro YAMAMOTO, Nobuo ANDO
  • Publication number: 20210111389
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions using an electrolyte solution that includes lithium ions. The electrolyte solution includes at least one type of additive having a reduction potential higher than a reduction potential of a solvent contained in the electrolyte solution.
    Type: Application
    Filed: February 21, 2019
    Publication date: April 15, 2021
    Applicants: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro DOI, Yuki KUSACHI, Noboru YAMAUCHI, Tomohiro KABURAGI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Naofumi SHOJI, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Publication number: 20200395594
    Abstract: A predoping method for a negative electrode active material to dope the negative electrode active material with lithium ions. The predoping method for a negative electrode active material includes: a predoping process and a post-doping modification process. In the predoping process, the negative electrode active material is doped with lithium ions, to thereby reduce a potential of the negative electrode active material relative to lithium metal. In the post-doping modification process, after the predoping process, reaction is caused between a reactive compound that is reactive with lithium ions and lithium ions doped into the negative electrode active material, to thereby increase the potential of the negative electrode active material relative to lithium metal. The potential of the negative electrode active material relative to lithium metal is 0.8 V or more at completion of the post-doping modification process.
    Type: Application
    Filed: February 21, 2019
    Publication date: December 17, 2020
    Applicants: NISSAN MOTOR CO., LTD., JSR Corporation
    Inventors: Shotaro DOI, Yuki KUSACHI, Noboru YAMAUCHI, Tomohiro KABURAGI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Naofumi SHOJI, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Publication number: 20200219669
    Abstract: There is provided a means capable of suppressing generation of a lithium dendrite at the time of charging and discharging while sufficiently suppressing an amount of gas generated at the time of initial charging of an electric device. When a lithium ion is doped in advance to a negative electrode active material, which is used in an electric device including a positive electrode and a negative electrode, after performing a pre-doping step of doping the lithium ion to a negative electrode active material to be doped to reduce a potential (vs. Li+/Li) of the negative electrode active material to be doped with respect to a lithium metal, a dedoping step of dedoping the lithium ion from the negative electrode active material doped with the lithium ion in the pre-doping step to increase a potential (vs. Li+/Li) of the negative electrode active material with respect to the lithium metal is performed.
    Type: Application
    Filed: July 18, 2018
    Publication date: July 9, 2020
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Shotaro DOI, Yuki KUSACHI, Hideaki HORIE, Yusuke NAKASHIMA, Kazuya TSUCHIDA, Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Nobuo ANDO, Terukazu KOKUBO
  • Patent number: 10580592
    Abstract: Provided is a method for manufacturing an electrode material having a pressing step in which an irregularly shaped aggregate containing at least an active material is statically pressed in the presence of an alkali metal source and a solvent.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 3, 2020
    Assignee: JSR Corporation
    Inventors: Koji Sumiya, Shigehito Asano, Yasuyuki Koga, Ryo Kimura, Tsutomu Reiba, Terukazu Kokubo, Nobuo Ando
  • Publication number: 20190198854
    Abstract: A manufacturing method for an electrode material, the manufacturing method including, in a presence of an alkali metal supplying source and a solvent, dynamically pressurizing an amorphous aggregate including at least an active material in a dynamic pressurizer, sending out in a sending direction, and continuously discharging the aggregate in the sending direction from the dynamic pressurizer.
    Type: Application
    Filed: April 27, 2017
    Publication date: June 27, 2019
    Applicant: JSR Corporation
    Inventors: Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Ryo KIMURA, Tsutomu REIBA, Terukazu KOKUBO, Nobuo ANDO, Takumi HATAZOE
  • Publication number: 20180301291
    Abstract: Provided is a method for manufacturing an electrode material having a pressing step in which an irregularly shaped aggregate containing at least an active material is statically pressed in the presence of an alkali metal source and a solvent.
    Type: Application
    Filed: September 28, 2016
    Publication date: October 18, 2018
    Applicant: JSR Corporation
    Inventors: Koji SUMIYA, Shigehito ASANO, Yasuyuki KOGA, Ryo KIMURA, Tsutomu REIBA, Terukazu KOKUBO, Nobuo ANDO
  • Patent number: 9496541
    Abstract: An accumulator device includes: an outer container with mutually overlapped outer films bonded air-tightly to each other at a bonding portion formed along respective outer peripheral edge portions; an electrode unit accommodated inside the outer container and including positive and negative electrode sheets stacked one on another with a separator disposed therebetween, the positive and negative electrode sheets each including a current collector on which an electrode layer is formed; positive and negative electrode terminals provided to protrude from inside the outer container to outside through the bonding portion; and an electrolytic solution injected in the outer container. The positive electrode terminal includes an aluminum terminal substrate and a nickel-plating coating formed on a surface of an outer end portion of the terminal substrate located outside the outer container; an inner edge of the nickel-plating coating is located within the bonding portion.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 15, 2016
    Assignee: JM Energy Corporation
    Inventors: Makoto Taguchi, Yuu Watanabe, Nobuo Ando, Hidenori Takagi
  • Patent number: 9496584
    Abstract: A wound-type accumulator is equipped with a cylindrical wound electrode unit, which has belt-like positive electrode and negative electrode and configured by winding an electrode stack obtained by stacking the positive electrode and negative electrode through a separator from one end thereof, and an electrolytic solution. The negative electrode and/or the positive electrode is doped with lithium ions by electrochemical contact of the negative electrode and/or the positive electrode with a lithium ion source, intra-positive electrode spaces are formed in the positive electrode, and at least one lithium ion source is provided in the intra-positive electrode space or at a position opposing to the intra-positive electrode space in the negative electrode in a state coming into no contact with the positive electrode.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: November 15, 2016
    Assignee: JM Energy Corporation
    Inventors: Makoto Taguchi, Yuu Watanabe, Nobuo Ando, Naoshi Yasuda, Chisato Marumo
  • Patent number: 9287058
    Abstract: An accumulator device which provides a high energy density and high output power is provided. The accumulator device (D) includes a positive electrode in which a positive electrode layer (A) is formed, a negative electrode in which a negative electrode layer (B) is formed, and an electrolytic solution (C). The accumulator device is characterized by satisfying that 1.02?WA/WB?2.08 and that 390 ?m?TA?750 ?m, where WA is the weight of the positive electrode layer (A), WB is the weight of the negative electrode layer (B), and TA is the thickness of the positive electrode in which the positive electrode layer (A) is formed.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 15, 2016
    Assignee: JM Energy Corporation
    Inventors: Nobuo Ando, Teruaki Tezuka, Yuu Watanabe, Makoto Taguchi, Kenji Kojima, Takashi Chiba, Hirobumi Suzuki
  • Patent number: 9208958
    Abstract: Provided is a lithium ion capacitor having a low internal resistance, a high energy density, and a high capacity retention rate. The lithium ion capacitor includes a positive electrode having a positive electrode active material layer formed on a roughened positive electrode current collector, a negative electrode having a negative electrode active material layer containing graphite-based particles formed on a negative electrode current collector, and an electrolytic solution containing a solution of a lithium salt in an aprotic organic solvent, wherein the total thickness of the positive electrode active material layer is 50 ?m to 140 ?m, and the ratio of mass of the positive electrode active material layer to the sum of the mass of the positive electrode active material layer and that of the negative electrode active material layer is 0.4 to 0.5.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: December 8, 2015
    Assignee: JM Energy Corporation
    Inventors: Teruaki Tezuka, Toshihiro Hayashi, Nobuo Ando, Yuu Watanabe, Makoto Taguchi, Naoshi Yasuda
  • Publication number: 20150343096
    Abstract: There are provided a liquid preparation for oral administration which contains barium that is likely to be mixed with residues and is less likely to be precipitated in the intestinal tract, and a liquid preparation for oral administration and a composition for imaging a digestive tract which contain barium and enable the reduction of the dose of an intestinal tract cleaning solution in a the intestinal tract pretreatment. That is, there are provided an orally administered liquid preparation which contains barium and one or more types of thickening agents selected from the group consisting of a natural polysaccharide and a cellulose-based polymer, in which the viscosity at a shear rate of 21.54 s?1 is 100 mPa·s or greater and the viscosity at a shear rate of 464.1 s?1 is 5 mPa·s to 90 mPa·s, and the particle diameter D10 which is the particle diameter when the accumulation value in a volume cumulative distribution of the barium becomes 10% is 0.30 ?m to 0.80 ?m and the particle diameter D90 is 1.
    Type: Application
    Filed: May 7, 2015
    Publication date: December 3, 2015
    Applicants: Ajinomoto Co., Inc., Fushimi Pharmaceutical Co., Ltd.
    Inventors: Dennai TAKEDA, Takayuki Fujiwara, Nobuo Ando, Tomoko Watanabe, Akira Yoshino
  • Patent number: 9093228
    Abstract: A method of producing an electric storage device includes a fastening that includes fastening a laminate that includes a lithium foil and a metal foil to at least one of a first separator and a second separator using a bonding member, and a winding that includes winding the first separator, the second separator, the laminate, a cathode, and an anode to obtain a wound element, one of the first separator and the second separator being disposed between the cathode and the anode.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: July 28, 2015
    Assignee: JM Energy Corporation
    Inventors: Motoki Mizukami, Kenji Nansaka, Nobuo Ando
  • Patent number: 9030804
    Abstract: Disclosed is an accumulator device that can prevent aluminum forming an outer container from forming an alloy with lithium even when fine lithium metal powder is isolated from a lithium ion supply source to adhere to the outer container. The accumulator device has an outer container at least a part of which is formed of aluminum or an aluminum alloy, a positive electrode and a negative electrode that are arranged in the outer container, and an electrolytic solution injected into the outer container and containing a lithium salt, wherein the negative electrode and/or the positive electrode is doped with a lithium ion by electrochemical contact of a lithium ion supply source arranged in the outer container with the negative electrode and/or the positive electrode, and the portion formed of aluminum or the aluminum alloy in the outer container is set to a positive potential.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: May 12, 2015
    Assignee: JM Energy Corporation
    Inventors: Kenji Nansaka, Nobuo Ando
  • Patent number: 9012089
    Abstract: A positive electrode system of an electric storage device includes first and second positive electrodes. The first and second positive electrodes include current collectors, and first and second positive-electrode mixture layers, respectively. The negative electrode system of the electric storage device has a negative electrode including a current collector and a negative-electrode mixture layer. The first positive electrode and the second positive electrode are arranged across the negative electrode. The first positive-electrode mixture layer and the second positive-electrode mixture layer are connected to each other, and of different types. Through-holes are formed in the current collector of the negative electrode arranged between the first positive-electrode mixture layer and the second positive-electrode mixture layer.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: April 21, 2015
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Kenji Kojima
  • Patent number: 8724292
    Abstract: A lithium-ion capacitor excellent in durability, which has high energy density and high capacity retention ratio when the capacitor is charged and discharged at a high load, is disclosed. The lithium-ion capacitor includes a positive electrode, a negative electrode and an aprotic organic solvent of a lithium salt as an electrolyte solution. In the lithium-ion capacitor, a positive electrode active material allows lithium ions and/or anions to be doped thereinto and de-doped therefrom, and a negative electrode active material allows lithium ions to be doped thereinto and de-doped therefrom. At least one of the negative electrode and the positive electrode is pre-doped with lithium ions so that after the positive electrode and the negative electrode are shortcircuited, a potential of the positive electrode is 2 V (relative to Li/Li+) or lower. A thickness of a positive electrode layer of the positive electrode is within a range from 18 to 108 ?m.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: May 13, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Hiromoto Taguchi, Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Yukinori Hatou