Patents by Inventor Nobuo Ando

Nobuo Ando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8404126
    Abstract: A resist layer is formed over one surface of a current-collector material, while a resist layer having a predetermined pattern is formed on the other surface of the current-collector material. Through-holes are formed on the current-collector material through an etching process. An electrode slurry is applied onto the current-collector material formed with the through-holes without removing the resist layers. Specifically, since the through-holes are closed by the resist layer, the electrode slurry does not pass through the through-holes to leak out. Therefore, the current-collector material can be conveyed in the horizontal direction, whereby the productivity of an electrode can be enhanced. The resist layers are made of PVdF, and the resist layers are removed in a heating and drying step in which the PVdF is dissolved.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 26, 2013
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai
  • Patent number: 8378016
    Abstract: The present invention provides a resin which generates an acid by irradiation and is a salt of an organic cation and an anionic polymer wherein the anionic polymer has no carbon-carbon unsaturated bond. The present invention further provides a chemically amplified resist composition comprising the same.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Nobuo Ando, Ichiki Takemoto, Isao Yoshida, Yukako Harada
  • Publication number: 20130017438
    Abstract: An accumulator device includes: an outer container with mutually overlapped outer films bonded air-tightly to each other at a bonding portion formed along respective outer peripheral edge portions; an electrode unit accommodated inside the outer container and including positive and negative electrode sheets stacked one on another with a separator disposed therebetween, the positive and negative electrode sheets each including a current collector on which an electrode layer is formed; positive and negative electrode terminals provided to protrude from inside the outer container to outside through the bonding portion; and an electrolytic solution injected in the outer container. The positive electrode terminal includes an aluminum terminal substrate and a nickel-plating coating formed on a surface of an outer end portion of the terminal substrate located outside the outer container; an inner edge of the nickel-plating coating is located within the bonding portion.
    Type: Application
    Filed: February 24, 2011
    Publication date: January 17, 2013
    Applicant: JM Energy Corporation
    Inventors: Makoto Taguchi, Yuu Watanabe, Nobuo Ando, Hidenori Takagi
  • Publication number: 20120328934
    Abstract: A laminate-packaged electric storage device includes an outer package, an electric storage device element, and an electrolyte solution, the outer package formed by stacking and seal-tight bonding outer package films along a bonding section formed in an outer edge area of the outer package films, the electric storage device element and the electrolyte solution being held in a receiving section formed inside the outer package. A non-bonding section surrounded by the bonding section and communicating with the receiving section is formed in the outer edge area, an opening is formed through at least one outer package film, and a seal section is formed to surround the opening formed in an area of the non-bonding section, the outer package films bonded in the seal section, and the opening formed in the area of the non-bonding section at a position other than a center position.
    Type: Application
    Filed: April 30, 2010
    Publication date: December 27, 2012
    Applicant: JM ENERGY CORPORATION
    Inventors: Yu Watanabe, Naoshi Yasuda, Nobuo Ando, Makoto Taguchi
  • Publication number: 20120293914
    Abstract: Disclosed is an accumulator device that can prevent aluminum forming an outer container from forming an alloy with lithium even when fine lithium metal powder is isolated from a lithium ion supply source to adhere to the outer container. The accumulator device has an outer container at least a part of which is formed of aluminum or an aluminum alloy, a positive electrode and a negative electrode that are arranged in the outer container, and an electrolytic solution injected into the outer container and containing a lithium salt, wherein the negative electrode and/or the positive electrode is doped with a lithium ion by electrochemical contact of a lithium ion supply source arranged in the outer container with the negative electrode and/or the positive electrode, and the portion formed of aluminum or the aluminum alloy in the outer container is set to a positive potential.
    Type: Application
    Filed: December 3, 2010
    Publication date: November 22, 2012
    Applicant: JM Energy Corporation
    Inventors: Kenji Nansaka, Nobuo Ando
  • Publication number: 20120281339
    Abstract: A method of producing an electric storage device includes a fastening that includes fastening a laminate that includes a lithium foil and a metal foil to at least one of a first separator and a second separator using a bonding member, and a winding that includes winding the first separator, the second separator, the laminate, a cathode, and an anode to obtain a wound element, one of the first separator and the second separator being disposed between the cathode and the anode.
    Type: Application
    Filed: December 24, 2010
    Publication date: November 8, 2012
    Applicant: JM Energy Corporation
    Inventors: Motoki Mizukami, Kenji Nansaka, Nobuo Ando
  • Patent number: 8283072
    Abstract: An electric storage device has positive and negative electrode systems. The positive electrode system includes a positive electrode having a current collector and a positive-electrode mixture layer. The negative electrode system includes a negative electrode having a current collector and a negative-electrode mixture layer. The negative electrode system further includes a first negative-electrode mixture layer and a second negative-electrode mixture layer, which are connected to each other and which include at least one different material or have different material composition ratios. The first negative-electrode mixture layer and the second negative-electrode mixture layer have different charge/discharge characteristics. A through-hole is formed in the current collector arranged between the first negative-electrode mixture layer and the second negative-electrode mixture layer.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: October 9, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Kenji Kojima, Yukinori Hatou
  • Patent number: 8263258
    Abstract: An electric storage device 10 has an electrode laminate unit 12 including positive electrodes 14, negative electrodes 15 and a lithium electrode 16 provided at the outermost part of the electrode laminate unit 12. The lithium electrode 16 has a lithium-electrode current collector 26 welded to a negative-electrode current collector 22 and a lithium unit 27 sandwiched between the lithium-electrode current collector 26 and the negative electrode 15. The lithium unit 27 is composed of a lithium holding plate 27a that is in contact with the lithium-electrode current collector 26, and a lithium ion source 27b that is provided to the lithium holding plate 27a. The lithium ion source 27b is not mounted on the lithium-electrode current collector 26, but only the lithium-electrode current collector 26 is laminated and welded, whereby the damage of the lithium ion source 27b is prevented, and the manufacturing operation is simplified.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 11, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kunio Nakazato, Mitsuru Nagai, Nobuo Ando
  • Patent number: 8241792
    Abstract: A crystal structure is provided to improve a characteristic of an electrode material, such as vanadium oxide. In the crystal structure, an amorphous state and a layered crystal state coexist at a predetermined ratio in a layered crystalline material such as vanadium oxide. In the layered crystalline material having such a layered crystal structure, layered crystal particles having a layer length L1 of 30 nm or shorter are formed. Ions are easily intercalated to and deintercalated from between the layers. When such a material is used for the positive electrode active material, a nonaqueous lithium secondary battery of which the discharge capacity and the cycle characteristic are good is manufactured.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: August 14, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Satoko Kaneko, Masahiko Taniguchi, Asao Iwata, Ryuji Shiozaki, Nobuo Ando
  • Patent number: 8232039
    Abstract: A polymer comprising a structural unit represented by the formula (I): wherein R1 represents a hydrogen atom or a methyl group, X represents a linear or branched chain C1-C6 alkylene group, Z represents a group represented by the formula (Ia): wherein R2 is independently in each occurrence a linear or branched chain C1-C6 alkyl group and m represents an integer of 0 to 15, and a structural unit represented by the formula (II): wherein R3 represents a hydrogen atom or a methyl group, R4 is independently in each occurrence a linear or branched chain C1-C6 alkyl group and n represents an integer of 0 to 4.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: July 31, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Nobuo Ando, Kazuhiko Hashimoto
  • Patent number: 8232009
    Abstract: An electrode laminate unit of an electric storage device includes positive electrodes, negative electrodes and a lithium electrode connected to the negative electrode. When an electrolyte solution is injected into the electric storage device, lithium ions are emitted from the lithium electrode to the negative electrode. A positive and a negative electrode current collector have through-holes that guide the lithium ions in the laminating direction. The aperture ratio of the through-holes at the edge parts where the electrolyte solution is easy to be permeated is set to be smaller than the aperture ratio at central parts in order to suppress the permeation. Thus, the distribution of the electrolyte solution is made uniform, whereby the doping amount is made uniform.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 31, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai, Takashi Utsunomiya, Ken Baba
  • Patent number: 8203826
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 19, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Patent number: 8173352
    Abstract: A resist composition comprising: (A) a resin comprising a structural unit having an acid-labile group in its side chain and a structural unit represented by the formula (I): wherein R1 represents a hydrogen atom or a methyl group, Z1 represents a single bond or —(CH2)k—CO—O—, k represents an integer of 1 to 4, and ring X represents an unsubstituted or substituted C3-C30 cyclic hydrocarbon group having —COO—, (B) a resin comprising a structural unit having an acid-labile group in its side chain and a structural unit represented by the formula (III): wherein R6 represents a hydrogen atom or a methyl group, R7 is independently in each occurrence a linear or branched chain C1-C6 alkyl group and n represents an integer of 0 to 4, and (C) an acid generator.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: May 8, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Nobuo Ando
  • Patent number: 8166635
    Abstract: In a current collector laminating step, a current-collector laminate unit 30 composed of current-collector materials 31 and 32 and a film material 33 is formed. Resist layers 34 having a predetermined pattern are formed on both surfaces of the current-collector laminate unit 30. An etching process is performed with the resist layers 34 used as a mask, whereby through-holes 20a and 23a are formed on the respective current-collector materials 31 and 32. The resist layers 34 are removed from the current-collector laminate unit 30. Since the etching process is performed on the plural current-collector materials 31 and 32, productivity of an electrode can be enhanced. During the application of the slurry, the film material 33 prevents the leakage of the electrode slurry. Therefore, the current-collector laminate unit 30 can be conveyed in the horizontal direction, whereby the productivity of the electrode can be enhanced.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 1, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Mitsuru Nagai, Nobuo Ando, Takashi Utsunomiya, Yutaka Sato, Ken Baba
  • Patent number: 8158329
    Abstract: The present invention provides a compound represented by the formula (I): wherein P1, P2, P3, P4 and P5 each independently represents a hydrogen atom etc., and at least one selected from the group consisting of R1, R2, R3, R4, R5, R6, R7, R8 and R9 is the group represented by the formula (II): wherein X1 and X2 each independently represent a hydrogen atom etc., n represents an integer of 1 to 4, Z1 represents a C1-C6 alkyl group etc., and ring Y represents an alicyclic hydrocarbon group, and the others each independently represent a hydrogen atom, a C1-C6 alkyl group or a hydroxyl group, and a chemically amplified resist composition containing the same.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 17, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Ichiki Takemoto, Nobuo Ando
  • Patent number: 8152865
    Abstract: An electrical storage device having a positive electrode, a negative electrode, a lithium electrode, and an electrolyte capable of transferring lithium ion, the lithium electrode is out of direct contact with the negative electrode, and lithium ion is supplied to the negative electrode by flowing a current between the lithium and negative electrode through an external circuit. A method of using the electrical storage device includes using the lithium electrode as a reference electrode, the positive electrode potential and negative electrode potential is measured, and the potential of the positive or negative electrode is controlled during charging or discharging. The potentials of the positive electrode and negative electrode are monitored to easily determine whether deterioration of the electrical storage device is caused by the positive or negative electrode.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: April 10, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Shinichi Tasaki, Yukinori Hato, Chisato Marumo
  • Patent number: 8148002
    Abstract: An electric storage device 10 has a positive electrode 13, a negative electrode 14 and a separator 15 provided between the positive electrode 13 and the negative electrode 14. The negative electrode surface 14b is formed to be larger than the positive electrode surface 13b in such a manner that a positive electrode outer edge 13c and a negative electrode outer edge 14c are apart from each other by 2 mm or more. By this configuration, an ion restricting section 15b is formed at the outer peripheral portion of the separator 15. Accordingly, the movement of the lithium ions toward the negative electrode end surface 14a can be restricted, when the device is charged with a large current, whereby the deposition of metal lithium on the negative electrode end surface 14a can be prevented.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: April 3, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Mitsuru Nagai, Takashi Utsunomiya, Kunio Nakazato, Nobuo Ando
  • Patent number: 8142930
    Abstract: To present a carbon material which provides an electrical storage device not only ensuring a high energy density but also realizing a high output and an excellent low temperature performance. A negative electrode active material for an electrical storage device employing an aprotic organic solvent electrolyte solution containing a lithium salt as an electrolytes characterized in that it is made of a carbon material having a specific surface area of from 0.01 to 50 m2/g and a total mesopore volume of from 0.005 to 1.0 cc/g, wherein volumes of mesopores having pore diameters of from 100 to 400 ? occupy at least 25% of the total mesopore volume.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: March 27, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kenji Kojima, Nobuo Ando, Tsutomu Fujii, Hiromoto Taguchi, Osamu Hatozaki, Yukinori Hato, Chisato Marumo
  • Patent number: 8124803
    Abstract: The present invention provides a salt of the formula (L) A salt of the formula (L): wherein Q represents —CO— group or —C(OH)— group; ring X represents monocyclic or polycyclic hydrocarbon group having 3 to 30 carbon atoms in which a hydrogen atom is substituted with a hydroxyl group at Q position when Q is —C(OH)— group or in which two hydrogen atoms are substituted with ?O group at Q position when Q is —CO— group, and at least one hydrogen atom in the monocylic or polycyclic hydrocarbon group may optionally be substituted with alkyl group having 1 to 6 carbon atom, alkoxy group having 1 to 6 carbon atom, perfluoroalkyl group having 1 to 4 carbon atoms, hydroxyalkyl group having 1 to 6 carbon atoms, hydroxyl group or cyano group; R10 and R20 each independently represent fluorine atom or perfluoroalkyl group having 1 to 6 carbon atoms; and A+ represents organic counter ion. The present invention also provides a chemically amplified resist composition comprising the salt of the formula (L).
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: February 28, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Isao Yoshida, Yukako Harada, Satoshi Yamaguchi, Nobuo Ando
  • Patent number: 8110336
    Abstract: A resin comprising a structural unit represented by the formula (I): wherein Q1 and Q2 represent a fluorine atom etc., U represents a C1-C20 divalent hydrocarbon group in which one or more —CH2— may be replaced by —O— etc., X1 represents —O—CO— etc., and A+ represents an organic counter ion.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 7, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Ichiki Takemoto, Nobuo Ando