Patents by Inventor Nobuo Ando

Nobuo Ando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8685117
    Abstract: A lithium ion capacitor includes, as a lithium ion supply source, a lithium metal foil for batteries or capacitors. A current collector 4 and a separator 3 formed of a paper or resin nonwoven fabric are preliminarily pressure-bonded and integrated to opposite surfaces of a lithium metal foil 1 for batteries or capacitors.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: April 1, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Nobuo Ando
  • Patent number: 8658298
    Abstract: A laminate-packaged electric storage device includes an outer package, an electric storage device element, and an electrolyte solution, the outer package formed by stacking and seal-tight bonding outer package films along a bonding section formed in an outer edge area of the outer package films, the electric storage device element and the electrolyte solution being held in a receiving section formed inside the outer package. A non-bonding section surrounded by the bonding section and communicating with the receiving section is formed in the outer edge area, an opening is formed through at least one outer package film, and a seal section is formed to surround the opening formed in an area of the non-bonding section, the outer package films bonded in the seal section, and the opening formed in the area of the non-bonding section at a position other than a center position.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: February 25, 2014
    Assignee: JM Energy Corporation
    Inventors: Yuu Watanabe, Naoshi Yasuda, Nobuo Ando, Makoto Taguchi
  • Publication number: 20140002959
    Abstract: An accumulator device which provides a high energy density and high output power is provided. The accumulator device (D) includes a positive electrode in which a positive electrode layer (A) is formed, a negative electrode in which a negative electrode layer (B) is formed, and an electrolytic solution (C). The accumulator device is characterized by satisfying that 1.02?WA/WB?2.08 and that 390 ?m?TA?750 ?m, where WA is the weight of the positive electrode layer (A), WB is the weight of the negative electrode layer (B), and TA is the thickness of the positive electrode in which the positive electrode layer (A) is formed.
    Type: Application
    Filed: February 27, 2012
    Publication date: January 2, 2014
    Applicant: JM Energy Corporation
    Inventors: Nobuo Ando, Teruaki Tezuka, Yuu Watanabe, Makoto Taguchi, Kenji Kojima, Takashi Chiba, Hirobumi Suzuki
  • Publication number: 20140002960
    Abstract: Provided is a lithium ion capacitor having a low internal resistance, a high energy density, and a high capacity retention rate. The lithium ion capacitor includes a positive electrode having a positive electrode active material layer formed on a roughened positive electrode current collector, a negative electrode having a negative electrode active material layer containing graphite-based particles formed on a negative electrode current collector, and an electrolytic solution containing a solution of a lithium salt in an aprotic organic solvent, wherein the total thickness of the positive electrode active material layer is 50 ?m to 140 ?m, and the ratio of mass of the positive electrode active material layer to the sum of the mass of the positive electrode active material layer and that of the negative electrode active material layer is 0.4 to 0.5.
    Type: Application
    Filed: February 1, 2012
    Publication date: January 2, 2014
    Applicant: JM Energy Corporation
    Inventors: Teruaki Tezuka, Toshihiro Hayashi, Nobuo Ando, Yuu Watanabe, Makoto Taguchi, Naoshi Yasuda
  • Patent number: 8524440
    Abstract: The present invention provides a photoresist composition comprising a resin which comprises a structural unit represented by the formula (I): wherein Q1 and Q2 independently represent a fluorine atom etc., U represents a C1-C20 divalent hydrocarbon group etc., X1 represents —O—CO— etc., and A+ represents an organic counter ion, and a compound represented by the formula (D?): wherein R51, R52, R53 and R54 independently represent a C1-C20 alkyl group etc., and A11 represents a C1-C36 saturated cyclic hydrocarbon group which may have one or more substituents and which may contain one or more heteroatoms.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 3, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yuko Yamashita, Nobuo Ando
  • Patent number: 8476473
    Abstract: A compounds represented by the Formula (I) or the Formula (I?). wherein Z1 and Z2 independently represent a hydrogen atom, a C1 to C12 alkyl group or a C3 to C12 cyclic saturated hydrocarbon group, provided that at least one of Z1 and Z2 represent a C1 to C12 alkyl group or a C3 to C12 cyclic saturated hydrocarbon group; rings Y1 and Y2 independently represents an optionally substituted C3 to C20 alicyclic hydrocarbon group; Q1 to Q4 and Q?1 to Q?4 independently represent a fluorine atom or a C1 to C6 perfluoroalkyl group; and m and n independently represent an integer of 0 to 5.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: July 2, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Ichiki Takemoto, Nobuo Ando, Mitsuhiro Hata
  • Patent number: 8404126
    Abstract: A resist layer is formed over one surface of a current-collector material, while a resist layer having a predetermined pattern is formed on the other surface of the current-collector material. Through-holes are formed on the current-collector material through an etching process. An electrode slurry is applied onto the current-collector material formed with the through-holes without removing the resist layers. Specifically, since the through-holes are closed by the resist layer, the electrode slurry does not pass through the through-holes to leak out. Therefore, the current-collector material can be conveyed in the horizontal direction, whereby the productivity of an electrode can be enhanced. The resist layers are made of PVdF, and the resist layers are removed in a heating and drying step in which the PVdF is dissolved.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 26, 2013
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai
  • Patent number: 8378016
    Abstract: The present invention provides a resin which generates an acid by irradiation and is a salt of an organic cation and an anionic polymer wherein the anionic polymer has no carbon-carbon unsaturated bond. The present invention further provides a chemically amplified resist composition comprising the same.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Nobuo Ando, Ichiki Takemoto, Isao Yoshida, Yukako Harada
  • Publication number: 20130017438
    Abstract: An accumulator device includes: an outer container with mutually overlapped outer films bonded air-tightly to each other at a bonding portion formed along respective outer peripheral edge portions; an electrode unit accommodated inside the outer container and including positive and negative electrode sheets stacked one on another with a separator disposed therebetween, the positive and negative electrode sheets each including a current collector on which an electrode layer is formed; positive and negative electrode terminals provided to protrude from inside the outer container to outside through the bonding portion; and an electrolytic solution injected in the outer container. The positive electrode terminal includes an aluminum terminal substrate and a nickel-plating coating formed on a surface of an outer end portion of the terminal substrate located outside the outer container; an inner edge of the nickel-plating coating is located within the bonding portion.
    Type: Application
    Filed: February 24, 2011
    Publication date: January 17, 2013
    Applicant: JM Energy Corporation
    Inventors: Makoto Taguchi, Yuu Watanabe, Nobuo Ando, Hidenori Takagi
  • Publication number: 20120328934
    Abstract: A laminate-packaged electric storage device includes an outer package, an electric storage device element, and an electrolyte solution, the outer package formed by stacking and seal-tight bonding outer package films along a bonding section formed in an outer edge area of the outer package films, the electric storage device element and the electrolyte solution being held in a receiving section formed inside the outer package. A non-bonding section surrounded by the bonding section and communicating with the receiving section is formed in the outer edge area, an opening is formed through at least one outer package film, and a seal section is formed to surround the opening formed in an area of the non-bonding section, the outer package films bonded in the seal section, and the opening formed in the area of the non-bonding section at a position other than a center position.
    Type: Application
    Filed: April 30, 2010
    Publication date: December 27, 2012
    Applicant: JM ENERGY CORPORATION
    Inventors: Yu Watanabe, Naoshi Yasuda, Nobuo Ando, Makoto Taguchi
  • Publication number: 20120293914
    Abstract: Disclosed is an accumulator device that can prevent aluminum forming an outer container from forming an alloy with lithium even when fine lithium metal powder is isolated from a lithium ion supply source to adhere to the outer container. The accumulator device has an outer container at least a part of which is formed of aluminum or an aluminum alloy, a positive electrode and a negative electrode that are arranged in the outer container, and an electrolytic solution injected into the outer container and containing a lithium salt, wherein the negative electrode and/or the positive electrode is doped with a lithium ion by electrochemical contact of a lithium ion supply source arranged in the outer container with the negative electrode and/or the positive electrode, and the portion formed of aluminum or the aluminum alloy in the outer container is set to a positive potential.
    Type: Application
    Filed: December 3, 2010
    Publication date: November 22, 2012
    Applicant: JM Energy Corporation
    Inventors: Kenji Nansaka, Nobuo Ando
  • Publication number: 20120281339
    Abstract: A method of producing an electric storage device includes a fastening that includes fastening a laminate that includes a lithium foil and a metal foil to at least one of a first separator and a second separator using a bonding member, and a winding that includes winding the first separator, the second separator, the laminate, a cathode, and an anode to obtain a wound element, one of the first separator and the second separator being disposed between the cathode and the anode.
    Type: Application
    Filed: December 24, 2010
    Publication date: November 8, 2012
    Applicant: JM Energy Corporation
    Inventors: Motoki Mizukami, Kenji Nansaka, Nobuo Ando
  • Patent number: 8283072
    Abstract: An electric storage device has positive and negative electrode systems. The positive electrode system includes a positive electrode having a current collector and a positive-electrode mixture layer. The negative electrode system includes a negative electrode having a current collector and a negative-electrode mixture layer. The negative electrode system further includes a first negative-electrode mixture layer and a second negative-electrode mixture layer, which are connected to each other and which include at least one different material or have different material composition ratios. The first negative-electrode mixture layer and the second negative-electrode mixture layer have different charge/discharge characteristics. A through-hole is formed in the current collector arranged between the first negative-electrode mixture layer and the second negative-electrode mixture layer.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: October 9, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Kenji Kojima, Yukinori Hatou
  • Patent number: 8263258
    Abstract: An electric storage device 10 has an electrode laminate unit 12 including positive electrodes 14, negative electrodes 15 and a lithium electrode 16 provided at the outermost part of the electrode laminate unit 12. The lithium electrode 16 has a lithium-electrode current collector 26 welded to a negative-electrode current collector 22 and a lithium unit 27 sandwiched between the lithium-electrode current collector 26 and the negative electrode 15. The lithium unit 27 is composed of a lithium holding plate 27a that is in contact with the lithium-electrode current collector 26, and a lithium ion source 27b that is provided to the lithium holding plate 27a. The lithium ion source 27b is not mounted on the lithium-electrode current collector 26, but only the lithium-electrode current collector 26 is laminated and welded, whereby the damage of the lithium ion source 27b is prevented, and the manufacturing operation is simplified.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 11, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kunio Nakazato, Mitsuru Nagai, Nobuo Ando
  • Patent number: 8241792
    Abstract: A crystal structure is provided to improve a characteristic of an electrode material, such as vanadium oxide. In the crystal structure, an amorphous state and a layered crystal state coexist at a predetermined ratio in a layered crystalline material such as vanadium oxide. In the layered crystalline material having such a layered crystal structure, layered crystal particles having a layer length L1 of 30 nm or shorter are formed. Ions are easily intercalated to and deintercalated from between the layers. When such a material is used for the positive electrode active material, a nonaqueous lithium secondary battery of which the discharge capacity and the cycle characteristic are good is manufactured.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: August 14, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Satoko Kaneko, Masahiko Taniguchi, Asao Iwata, Ryuji Shiozaki, Nobuo Ando
  • Patent number: 8232009
    Abstract: An electrode laminate unit of an electric storage device includes positive electrodes, negative electrodes and a lithium electrode connected to the negative electrode. When an electrolyte solution is injected into the electric storage device, lithium ions are emitted from the lithium electrode to the negative electrode. A positive and a negative electrode current collector have through-holes that guide the lithium ions in the laminating direction. The aperture ratio of the through-holes at the edge parts where the electrolyte solution is easy to be permeated is set to be smaller than the aperture ratio at central parts in order to suppress the permeation. Thus, the distribution of the electrolyte solution is made uniform, whereby the doping amount is made uniform.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 31, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai, Takashi Utsunomiya, Ken Baba
  • Patent number: 8232039
    Abstract: A polymer comprising a structural unit represented by the formula (I): wherein R1 represents a hydrogen atom or a methyl group, X represents a linear or branched chain C1-C6 alkylene group, Z represents a group represented by the formula (Ia): wherein R2 is independently in each occurrence a linear or branched chain C1-C6 alkyl group and m represents an integer of 0 to 15, and a structural unit represented by the formula (II): wherein R3 represents a hydrogen atom or a methyl group, R4 is independently in each occurrence a linear or branched chain C1-C6 alkyl group and n represents an integer of 0 to 4.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: July 31, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Nobuo Ando, Kazuhiko Hashimoto
  • Patent number: 8203826
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 19, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Patent number: 8173352
    Abstract: A resist composition comprising: (A) a resin comprising a structural unit having an acid-labile group in its side chain and a structural unit represented by the formula (I): wherein R1 represents a hydrogen atom or a methyl group, Z1 represents a single bond or —(CH2)k—CO—O—, k represents an integer of 1 to 4, and ring X represents an unsubstituted or substituted C3-C30 cyclic hydrocarbon group having —COO—, (B) a resin comprising a structural unit having an acid-labile group in its side chain and a structural unit represented by the formula (III): wherein R6 represents a hydrogen atom or a methyl group, R7 is independently in each occurrence a linear or branched chain C1-C6 alkyl group and n represents an integer of 0 to 4, and (C) an acid generator.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: May 8, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Nobuo Ando
  • Patent number: 8166635
    Abstract: In a current collector laminating step, a current-collector laminate unit 30 composed of current-collector materials 31 and 32 and a film material 33 is formed. Resist layers 34 having a predetermined pattern are formed on both surfaces of the current-collector laminate unit 30. An etching process is performed with the resist layers 34 used as a mask, whereby through-holes 20a and 23a are formed on the respective current-collector materials 31 and 32. The resist layers 34 are removed from the current-collector laminate unit 30. Since the etching process is performed on the plural current-collector materials 31 and 32, productivity of an electrode can be enhanced. During the application of the slurry, the film material 33 prevents the leakage of the electrode slurry. Therefore, the current-collector laminate unit 30 can be conveyed in the horizontal direction, whereby the productivity of the electrode can be enhanced.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 1, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Mitsuru Nagai, Nobuo Ando, Takashi Utsunomiya, Yutaka Sato, Ken Baba