Patents by Inventor Nobuo Owada

Nobuo Owada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8394726
    Abstract: A method for manufacturing a semiconductor device includes the steps of: loading a substrate into a reaction chamber; supplying reactive gases into the reaction chamber and processing the substrate; and unloading the processed substrate from the reaction chamber, wherein the step of processing the substrate includes: a first film formation step of setting the substrate to a first temperature and forming a first silicon film including impurity atoms on the substrate and a second film formation step of setting the substrate to a second temperature, which is lower than the first temperature, and forming a second silicon film that includes no impurity atoms or has an impurity concentration lower than that of the first silicon film on at least the first silicon film.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: March 12, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Takahiro Maeda, Nobuo Owada
  • Patent number: 8384220
    Abstract: A semiconductor IC device includes a buried interconnection in interconnection layers over a semiconductor substrate, in which electrical connection of interconnections are provided over and under an interconnection layer of an embedded interconnection from among the interconnection layers such that a first connecting conductor portion within a connecting hole extending from an upper interconnection toward the interconnection layer of a predetermined buried interconnection and a second connecting conductor portion within the connecting hole extending from a lower interconnection toward the interconnection layer of the predetermined buried interconnection are electrically connected via a connecting conductor portion for relay in the connecting groove of the interconnection layer of a predetermined buried interconnection.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: February 26, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Tatsuyuki Saito, Junji Noguchi, Hizuru Yamaguchi, Nobuo Owada
  • Patent number: 8129275
    Abstract: In order to provide an anticorrosive technique for metal wirings formed by a chemical mechanical polishing (CMP) method, a process for manufacturing a semiconductor integrated circuit device according to the invention comprises the steps of: forming a metal layer of Cu (or a Cu alloy containing Cu as a main component) over the major face of a wafer and then planarizing the metal layer by a chemical mechanical polishing (CMP) method to form metal wirings; anticorroding the planarized major face of the wafer to form a hydrophobic protective film over the surfaces of the metal wirings; immersing the anticorroded major face of the wafer or keeping the same in a wet state so that it may not become dry; and post-cleaning the major face, kept in the wet state, of the wafer.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Naofumi Ohashi, Junji Noguchi, Toshinori Imai, Hizuru Yamaguchi, Nobuo Owada, Kenji Hinode, Yoshio Homma, Seiichi Kondo
  • Publication number: 20110230061
    Abstract: A manufacturing method of a semiconductor device includes the steps of carrying a substrate in a processing chamber, bringing the processing chamber into a state at a first pressure by supplying a silicon compound gas which contains carbon and hydrogen into the processing chamber, forming a silicon oxide film on the substrate by irradiating a UV light to the silicon compound gas supplied into the processing chamber in the state kept at the first pressure, and decompression process to bring the processing chamber into a state at a second pressure lower than the first pressure. This makes it possible to form the dense silicon oxide film in the trench with high aspect ratio and small width.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Applicant: Hitachi Koskusai Electric Inc.
    Inventors: Naofumi Ohashi, Yuichi Wada, Nobuo Owada, Takeshi Taniguchi
  • Patent number: 7955948
    Abstract: A manufacturing method of a semiconductor device includes the steps of carrying a substrate in a processing chamber, bringing the processing chamber into a state at a first pressure by supplying a silicon compound gas which contains carbon and hydrogen into the processing chamber, forming a silicon oxide film on the substrate by irradiating a UV light to the silicon compound gas supplied into the processing chamber in the state kept at the first pressure, and decompression process to bring the processing chamber into a state at a second pressure lower than the first pressure. This makes it possible to form the dense silicon oxide film in the trench with high aspect ratio and small width.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 7, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Naofumi Ohashi, Yuichi Wada, Nobuo Owada, Takeshi Taniguchi
  • Publication number: 20100136786
    Abstract: In order to provide an anticorrosive technique for metal wirings formed by a chemical mechanical polishing (CMP) method, a process for manufacturing a semiconductor integrated circuit device according to the invention comprises the steps of: forming a metal layer of Cu (or a Cu alloy containing Cu as a main component) over the major face of a wafer and then planarizing the metal layer by a chemical mechanical polishing (CMP) method to form metal wirings; anticorroding the planarized major face of the wafer to form a hydrophobic protective film over the surfaces of the metal wirings; immersing the anticorroded major face of the wafer or keeping the same in a wet state so that it may not become dry; and post-cleaning the major face, kept in the wet state, of the wafer.
    Type: Application
    Filed: February 5, 2010
    Publication date: June 3, 2010
    Inventors: Naofumi Ohashi, Junji Noguchi, Toshinori Imai, Hizuru Yamaguchi, Nobuo Owada, Kenji Hinode, Yoshio Homma, Seiichi Kondo
  • Publication number: 20100055926
    Abstract: A manufacturing method of a semiconductor device includes the steps of carrying a substrate in a processing chamber, bringing the processing chamber into a state at a first pressure by supplying a silicon compound gas which contains carbon and hydrogen into the processing chamber, forming a silicon oxide film on the substrate by irradiating a UV light to the silicon compound gas supplied into the processing chamber in the state kept at the first pressure, and decompression process to bring the processing chamber into a state at a second pressure lower than the first pressure. This makes it possible to form the dense silicon oxide film in the trench with high aspect ratio and small width.
    Type: Application
    Filed: September 1, 2009
    Publication date: March 4, 2010
    Inventors: Naofumi Ohashi, Yuichi Wada, Nobuo Owada, Takeshi Taniguchi
  • Patent number: 7659201
    Abstract: In order to provide an anticorrosive technique for metal wirings formed by a chemical mechanical polishing (CMP) method, a process for manufacturing a semiconductor integrated circuit device according to the invention comprises the steps of: forming a metal layer of Cu (or a Cu alloy containing Cu as a main component) over the major face of a wafer and then planarizing the metal layer by a chemical mechanical polishing (CMP) method to form metal wirings; anticorroding the planarized major face of the wafer to form a hydrophobic protective film over the surfaces of the metal wirings; immersing the anticorroded major face of the wafer or keeping the same in a wet state so that it may not become dry; and post-cleaning the major face, kept in the wet state, of the wafer.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: February 9, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Naofumi Ohashi, Junji Noguchi, Toshinori Imai, Hizuru Yamaguchi, Nobuo Owada, Kenji Hinode, Yoshio Homma, Seiichi Kondo
  • Publication number: 20100029089
    Abstract: A method for manufacturing a semiconductor device includes the steps of: loading a substrate into a reaction chamber; supplying reactive gases into the reaction chamber and processing the substrate; and unloading the processed substrate from the reaction chamber, wherein the step of processing the substrate includes: a first film formation step of setting the substrate to a first temperature and forming a first silicon film including impurity atoms on the substrate and a second film formation step of setting the substrate to a second temperature, which is lower than the first temperature, and forming a second silicon film that includes no impurity atoms or has an impurity concentration lower than that of the first silicon film on at least the first silicon film.
    Type: Application
    Filed: July 27, 2009
    Publication date: February 4, 2010
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Takahiro Maeda, Nobuo Owada
  • Patent number: 7510970
    Abstract: In order to provide an anticorrosive technique for metal wirings formed by a chemical mechanical polishing (CMP) method, a process for manufacturing a semiconductor integrated circuit device according to the invention comprises the steps of: forming a metal layer of Cu (or a Cu alloy containing Cu as a main component) over the major face of a wafer and then planarizing the metal layer by a chemical mechanical polishing (CMP) method to form metal wirings; anticorroding the planarized major face of the wafer to form a hydrophobic protective film over the surfaces of the metal wirings; immersing the anticorroded major face of the wafer or keeping the same in a wet state so that it may not become dry; and post-cleaning the major face, kept in the wet state, of the wafer.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 31, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Naofumi Ohashi, Junji Noguchi, Toshinori Imai, Hizuru Yamaguchi, Nobuo Owada, Kenji Hinode, Yoshio Homma, Seiichi Kondo
  • Publication number: 20080233736
    Abstract: In order to provide an anticorrosive technique for metal wirings formed by a chemical mechanical polishing (CMP) method, a process for manufacturing a semiconductor integrated circuit device according to the invention comprises the steps of: forming a metal layer of Cu (or a Cu alloy containing Cu as a main component) over the major face of a wafer and then planarizing the metal layer by a chemical mechanical polishing (CMP) method to form metal wirings; anticorroding the planarized major face of the wafer to form a hydrophobic protective film over the surfaces of the metal wirings; immersing the anticorroded major face of the wafer or keeping the same in a wet state so that it may not become dry; and post-cleaning the major face, kept in the wet state, of the wafer.
    Type: Application
    Filed: May 27, 2008
    Publication date: September 25, 2008
    Inventors: Naofumi Ohashi, Junji Noguchi, Toshinori Imai, Hizuru Yamaguchi, Nobuo Owada, Kenji Hinode, Yoshio Homma, Seiichi Kondo
  • Publication number: 20080230916
    Abstract: A semiconductor IC device includes a buried interconnection in interconnection layers over a semiconductor substrate, in which electrical connection of interconnections are provided over and under an interconnection layer of an embedded interconnection from among the interconnection layers such that a first connecting conductor portion within a connecting hole extending from an upper interconnection toward the interconnection layer of a predetermined buried interconnection and a second connecting conductor portion within the connecting hole extending from a lower interconnection toward the interconnection layer of the predetermined buried interconnection are electrically connected via a connecting conductor portion for relay in the connecting groove of the interconnection layer of a predetermined buried interconnection.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 25, 2008
    Inventors: Tatsuyuki Saito, Junji Noguchi, Hizuru Yamaguchi, Nobuo Owada
  • Patent number: 7387957
    Abstract: In a fabrication process of a semiconductor integrated circuit device, upon effecting connection of an interconnection made of aluminum or aluminum alloy and another interconnection made of Cu or Cu alloy, a barrier conductor film or plug is disposed at the joint portion between these interconnections. Among the interconnection layers formed, the uppermost one is made of a wiring material such as aluminum or aluminum alloy, while the lower one is made of Cu or Cu alloy. The lowest interconnection is made of a conductive material other than Cu or Cu alloy. For example, the conductive material which permits minute processing and has both low resistance and high EM resistance such as tungsten is employed.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 17, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Tatsuyuki Saito, Junji Noguchi, Hizuru Yamaguchi, Nobuo Owada
  • Publication number: 20080138979
    Abstract: After formation of Cu interconnections 46a to 46e each to be embedded in an interconnection groove 40 of a silicon oxide film 39 by CMP and then washing, the surface of each of the silicon oxide film 39 and Cu interconnections 46a to 46e is treated with a reducing plasma (ammonia plasma). Then, without vacuum break, a cap film (silicon nitride film) is formed continuously. This process makes it possible to improve the dielectric breakdown resistance (reliability) of a copper interconnection formed by the damascene method.
    Type: Application
    Filed: January 23, 2008
    Publication date: June 12, 2008
    Inventors: Junji NOGUCHI, Naofumi Ohashi, Kenichi Takeda, Tatsuyuki Saito, Hizuru Yamaguchii, Nobuo Owada
  • Publication number: 20060141792
    Abstract: In order to provide an anticorrosive technique for metal wirings formed by a chemical mechanical polishing (CMP). method, a process for manufacturing. a semiconductor integrated circuit device according to the invention comprises the steps of: forming a metal layer of Cu (or a Cu alloy containing Cu as a main component) over the major face of a wafer and then planarizing the metal layer by a chemical mechanical polishing (CMP) method to form metal wirings; anticorroding the planarized major face of the wafer to form a hydrophobic protective film over the surfaces of the metal wirings; immersing the anticorroded major face of the wafer or keeping the same in a wet state so that it may not become dry; and post-cleaning the major face, kept in the wet state, of the wafer.
    Type: Application
    Filed: February 21, 2006
    Publication date: June 29, 2006
    Inventors: Naofumi Ohashi, Junji Noguchi, Toshinori Imai, Hizuru Yamaguchi, Nobuo Owada, Kenji Hinode, Yoshio Homma, Seiichi Kondo
  • Publication number: 20050151264
    Abstract: In a fabrication process of a semiconductor integrated circuit device, upon effecting connection of an interconnection made of aluminum or aluminum alloy and another interconnection made of Cu or Cu alloy, a barrier conductor film or plug is disposed at the joint portion between these interconnections. Among the interconnection layers formed, the uppermost one is made of a wiring material such as aluminum or aluminum alloy, while the lower one is made of Cu or Cu alloy. The lowest interconnection is made of a conductive material other than Cu or Cu alloy. For example, the conductive material which permits minute processing and has both low resistance and high EM resistance such as tungsten is employed.
    Type: Application
    Filed: February 16, 2005
    Publication date: July 14, 2005
    Inventors: Tatsuyuki Saito, Junji Noguchi, Hizuru Yamaguchi, Nobuo Owada
  • Patent number: 6894334
    Abstract: Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel s
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: May 17, 2005
    Assignees: Hitachi, Ltd., Hitachi VLSI Engineering Corp.
    Inventors: Jun Sugiura, Osamu Tsuchiya, Makoto Ogasawara, Fumio Ootsuka, Kazuyoshi Torii, Isamu Asano, Nobuo Owada, Mitsuaki Horiuchi, Tsuyoshi Tamaru, Hideo Aoki, Nobuhiro Otsuka, Seiichirou Shirai, Masakazu Sagawa, Yoshihiro Ikeda, Masatoshi Tsuneoka, Toru Kaga, Tomotsugu Shimmyo, Hidetsugu Ogishi, Osamu Kasahara, Hiromichi Enami, Atsushi Wakahara, Hiroyuki Akimori, Sinichi Suzuki, Keisuke Funatsu, Yoshinao Kawasaki, Tunehiko Tubone, Takayoshi Kogano, Ken Tsugane
  • Patent number: 6864169
    Abstract: After formation of Cu interconnections 46a to 46e each to be embedded in an interconnection groove 40 of a silicon oxide film 39 by CMP and then washing, the surface of each of the silicon oxide film 39 and Cu interconnections 46a to 46e is treated with a reducing plasma (ammonia plasma). Then, without vacuum break, a cap film (silicon nitride film) is formed continuously. This process makes it possible to improve the dielectric breakdown resistance (reliability) of a copper interconnection formed by the damascene method.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: March 8, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Junji Noguchi, Naofumi Ohashi, Kenichi Takeda, Tatsuyuki Saito, Hizuru Yamaguchii, Nobuo Owada
  • Patent number: 6861756
    Abstract: In a semiconductor integrated circuit device, upon connection of an interconnection made of aluminum or aluminum alloy and another interconnection made of Cu or Cu alloy, a barrier conductor film or plug is disposed at the joint portion between these interconnections. Among the interconnection layers, the uppermost one is made of a wiring material such as aluminum or aluminum alloy, while the lower, one is made of Cu or Cu alloy. The lowest interconnection is made of a conductive material other than Cu or Cu alloy. For example, the conductive material which permits minute processing and has both low resistance and high EM resistance such as tungsten is employed.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: March 1, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Tatsuyuki Saito, Junji Noguchi, Hizuru Yamaguchi, Nobuo Owada
  • Patent number: 6849535
    Abstract: A semiconductor device comprises a semiconductor substrate; a first insulating film overlying a surface of the semiconductor substrate, an upper surface of the first insulating film being nitrided; a first copper-embedded interconnection embedded in the first insulating film, and which first copper-embedded interconnection contains copper as a main component; a copper nitride film overlying an upper surface of the first copper-embedded interconnection; a cap insulating film overlying an upper surface of the first insulating film and an upper surface of the copper nitride film; and a second insulting film overlying the cap insulating film.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: February 1, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Junji Noguchi, Naofumi Ohashi, Kenichi Takeda, Tatsuyuki Saito, Hizuru Yamaguchi, Nobuo Owada