Patents by Inventor Nobuo Owada

Nobuo Owada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5780882
    Abstract: Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel s
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: July 14, 1998
    Assignees: Hitachi, Ltd., Hitachi VLSI Engineering Corp.
    Inventors: Jun Sugiura, Osamu Tsuchiya, Makoto Ogasawara, Fumio Ootsuka, Kazuyoshi Torii, Isamu Asano, Nobuo Owada, Mitsuaki Horiuchi, Tsuyoshi Tamaru, Hideo Aoki, Nobuhiro Otsuka, Seiichirou Shirai, Masakazu Sagawa, Yoshihiro Ikeda, Masatoshi Tsuneoka, Toru Kaga, Tomotsugu Shimmyo, Hidetsugu Ogishi, Osamu Kasahara, Hiromichi Enami, Atsushi Wakahara, Hiroyuki Akimori, Sinichi Suzuki, Keisuke Funatsu, Yoshinao Kawasaki, Tunehiko Tubone, Takayoshi Kogano, Ken Tsugane
  • Patent number: 5739589
    Abstract: Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel s
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: April 14, 1998
    Assignees: Hitachi, Ltd., Hitachi VLSI Engineering Corp.
    Inventors: Jun Sugiura, Osamu Tsuchiya, Makoto Ogasawara, Fumio Ootsuka, Kazuyoshi Torii, Isamu Asano, Nobuo Owada, Mitsuaki Horiuchi, Tsuyoshi Tamaru, Hideo Aoki, Nobuhiro Otsuka, Seiichirou Shirai, Masakazu Sagawa, Yoshihiro Ikeda, Masatoshi Tsuneoka, Toru Kaga, Tomotsugu Shimmyo, Hidetsugu Ogishi, Osamu Kasahara, Hiromichi Enami, Atsushi Wakahara, Hiroyuki Akimori, Sinichi Suzuki, Keisuke Funatsu, Yoshinao Kawasaki, Tunehiko Tubone, Takayoshi Kogano, Ken Tsugane
  • Patent number: 5607866
    Abstract: In a method of fabricating a semiconductor device having a MISFET and/or bipolar transistor and/or a resistor formed with different surface portions of a single silicon semiconductor substrate in which a silicide layer is formed on each of source/drain regions of the MISFET and/or collector contact region and extrinsic base region of the bipolar transistor and/or contact regions of the resistor, the bipolar transistor has its emitter region formed by diffusing an impurity contained in doped polysilicon film serving as an emitter electrode of the bipolar transistor into a part of its base region. The resistor may have a resistive region formed in a surface portion of the substrate and may be covered with an insulating film and a doped polysilicon film thereon or may have a doped polysilicon film formed over a surface portion of the substrate as a resistor element.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: March 4, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Kazushige Sato, Atsuo Watanabe, Kenichi Kikushima, Nobuo Owada, Masaya Iida
  • Patent number: 5557147
    Abstract: Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel s
    Type: Grant
    Filed: April 19, 1994
    Date of Patent: September 17, 1996
    Assignees: Hitachi, Ltd., Hitachi ULSI Engineering Corporation
    Inventors: Jun Sugiura, Osamu Tsuchiya, Makoto Ogasawara, Fumio Ootsuka, Kazuyoshi Torii, Isamu Asano, Nobuo Owada, Mitsuaki Horiuchi, Tsuyoshi Tamaru, Hideo Aoki, Nobuhiro Otsuka, Seiichirou Shirai, Masakazu Sagawa, Yoshihiro Ikeda, Masatoshi Tsuneoka, Toru Kaga, Tomotsugu Shimmyo, Hidetsugu Ogishi, Osamu Kasahara, Hiromichi Enami, Atsushi Wakahara, Hiroyuki Akimori, Sinichi Suzuki, Keisuke Funatsu, Yoshinao Kawasaki, Tunehiko Tubone, Takayoshi Kogano, Ken Tsugane
  • Patent number: 5331191
    Abstract: Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel s
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: July 19, 1994
    Assignees: Hitachi, Ltd., Hitachi VLSI Engineering Corp.
    Inventors: Jun Sugiura, Osamu Tsuchiya, Makoto Ogasawara, Fumio Ootsuka, Kazuyoshi Torii, Isamu Asano, Nobuo Owada, Mitsuaki Horiuchi, Tsuyoshi Tamaru, Hideo Aoki, Nobuhiro Otsuka, Seiichirou Shirai, Masakazu Sagawa, Yoshihiro Ikeda, Masatoshi Tsuneoka, Toru Kaga, Tomotsugu Shimmyo, Hidetsugu Ogishi, Osamu Kasahara, Hiromichi Enami, Atsushi Wakahara, Hiroyuki Akimori, Sinichi Suzuki, Keisuke Funatsu, Yoshinao Kawasaki, Tunehiko Tubone, Takayoshi Kogano, Ken Tsugane
  • Patent number: 5244820
    Abstract: The present invention relates to an ion implantation process in a wafer process for a semiconductor integrated circuit device. Particularly, according to the present invention, a shallow junction can be formed by performing the implantation of ion while holding a wafer to be processed at a low temperature.
    Type: Grant
    Filed: August 3, 1992
    Date of Patent: September 14, 1993
    Inventors: Tadashi Kamata, Mitsuharu Honda, Jun Sugiura, Nobuo Owada, Hizuru Yamaguchi
  • Patent number: 5234845
    Abstract: Herein disclosed is an improved bipolar transistor manufacturing method which adopts an EBT (Epitaxial Base Transistor) structure using an SPESG (Selective Poly-and-Epitaxial-Silicon Growth) technique. Specifically, the method of manufacturing a bipolar transistor according to the present invention comprises the steps of: forming an isolation oxide layer to enclose an active region of a single crystal semiconductor substrate and to have a lower surface than that of the substrate of said active region; simultaneously forming a single crystal silicon layer over the substrate surface of said active region and a polycrystal silicon layer to become integral with said single crystal silicon layer over the surface of said isolation oxide layer by simultaneously growing silicon films over the substrate surface of said active region and the surface of said isolation oxide layer; and forming an active region of a semiconductor element in said single crystal silicon layer.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: August 10, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Atsumi Aoki, Hizuru Yamaguchi, Nobuo Owada
  • Patent number: 5229643
    Abstract: The heat transfer path (the heat radiating portion) from a position very near the semiconductor device as the heat source to the surface of the semiconductor apparatus is made of a material having a large heat conductivity thereby to more rapidly transfer the heat generated in the p-n junction to the surface of the semiconductor apparatus or the outside. This arrangement can cope with that the calorific power is increased as the integration is increased. The formation of the good heat conductive material from the surface of the apparatus to the heat source through the multilayer structure film can be attained by means of the CVD technique.
    Type: Grant
    Filed: July 24, 1991
    Date of Patent: July 20, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Ohta, Norio Ishitsuka, Akihiro Yaguchi, Sueo Kawai, Nobuo Owada, Shigeki Hirasawa
  • Patent number: 5227317
    Abstract: A method of manufacturing a bipolar transistor having a base lead-out electrode provided so as to surround an emitter region to be formed on a main surface of a semiconductor substrate and also having an emitter lead-out electrode provided along a stepped shape of the base lead-out electrode and connected to said emitter region is characterized by forming a first silicon film selectively only in an area surrounded by the base lead-out electrode. Impurity is introduced into the first silicon film and then diffused into the main surface of the semiconductor substrate to form the emitter region. Finally, a second silicon film is formed on the first silicon film to serve as the emitter lead-out electrode.
    Type: Grant
    Filed: September 20, 1991
    Date of Patent: July 13, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Owada, Hizuru Uda
  • Patent number: 5220199
    Abstract: A multi-layered structure of wirings on a semiconductor substrate has been employed in conjunction with the increase in the integration density of semiconductor integrated circuit devices. In the invention, dummy patterns made of the same material as an Al wiring layer for compensating for any step or level gradation are disposed in the regions below bump electrodes and in the proximity thereof in order to reduce any defects inherent to a multi-layered structure that occur in CCB bump electrodes formed on the multi-layered wirings and at pads as the base layer of the former.
    Type: Grant
    Filed: June 13, 1991
    Date of Patent: June 15, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Owada, Kaoru Oogaya, Tohru Kobayashi, Mikinori Kawaji
  • Patent number: 5202275
    Abstract: Herein disclosed is a semiconductor integrated circuit device fabricating process for forming MISFETs over the principal surface in those active regions of a substrate, which are surrounded by inactive regions formed of an element separating insulating film and channel stopper regions, comprising: the step of for forming a first mask by a non-oxidizable mask and an etching mask sequentially over the principal surface of the active regions of the substrate; the step of forming a second mask on and in self-alignment with the side walls of the first mask by a non-oxidizable mask thinner than the non-oxidizable mask of the first mask and an etching mask respectively; the step of etching the principal surface of the inactive regions of the substrate by using the first mask and the second mask; the step of forming the element separating insulating film over the principal surface of the inactive regions of the substrate by an oxidization using the first mask and the second mask; and the step of forming the channel s
    Type: Grant
    Filed: March 20, 1990
    Date of Patent: April 13, 1993
    Assignees: Hitachi Ltd., Hitachi VLSI Engineering Corp.
    Inventors: Jun Sugiura, Osamu Tsuchiya, Makoto Ogasawara, Fumio Ootsuka, Kazuyoshi Torii, Isamu Asano, Nobuo Owada, Mitsuaki Horiuchi, Tsuyoshi Tamaru, Hideo Aoki, Nobuhiro Otsuka, Seiichirou Shirai, Masakazu Sagawa, Yoshihiro Ikeda, Masatoshi Tsuneoka, Toru Kaga, Tomotsugu Shimmyo, Hidetsugu Ogishi, Osamu Kasahara, Hiromichi Enami, Atsushi Wakahara, Hiroyuki Akimori, Sinichi Suzuki, Keisuke Funatsu, Yoshinao Kawasaki, Tunehiko Tubone, Takayoshi Kogano, Ken Tsugane
  • Patent number: 5089430
    Abstract: A method of manufacturing a bipolar transistor having a base lead-out electrode provided so as to surround an emitter region to be formed on a main surface of a semiconductor substrate and also having an emitter lead-out electrode provided along a stepped shape of the base lead-out electrode and connected to said emitter region is characterized by forming a first silicon film selectively only in an area surrounded by the base lead-out electrode. Impurity is introduced into the first silicon film and then diffused into the main surface of the semiconductor substrate to form the emitter region. Finally, a second silicon film is formed on the first silicon film to serve as the emitter lead-out electrode.
    Type: Grant
    Filed: April 16, 1990
    Date of Patent: February 18, 1992
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Owada, Hizuru Uda
  • Patent number: 5073810
    Abstract: A semiconductor integrated circuit device having at least one bipolar transistor comprises a semiconductor substrate of monocrystalline silicon having a main surface; an isolation oxide layer selectively formed on the main surface so as to surround an active region of the main surface; a first silicon layer formed on the active region and extending on the isolation oxide layer and a second silicon layer stacked on the first silicon layer, wherein a collector region of a bipolar transistor is formed on the active region of the first silicon layer, the intrinsic base region is formed on the active region of the second silicon layer, and a base-lead out region which is electrically connected with the intrinsic base region is formed of the first and second silicon layers over the isolation oxide layer.
    Type: Grant
    Filed: October 19, 1990
    Date of Patent: December 17, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Owada, Hizuru Yamaguchi, Sekiko Ozono, Atsumi Yasuda
  • Patent number: 5068710
    Abstract: On a semiconductor film to function as a lead-out electrode of a semiconductor element, a metal silicide film and a metal nitride film are successively provided, whereby alloying and inferior contact resistances attributed to heat during wiring with aluminum can be effectively suppressed, so that the reliability of a semiconductor device can be enhanced.
    Type: Grant
    Filed: August 22, 1989
    Date of Patent: November 26, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Owada, Mitsuaki Horiuchi, Masatoshi Tsuneoka, Tadayuki Taneoka
  • Patent number: 5060045
    Abstract: Disclosed is a semiconductor integrated circuit device adopting a gate array scheme, having a plurality of layers of wiring formed by a Design Automation system. The device according to the present invention includes a semiconductor substrate having basic cell forming regions, the basic cell forming regions being spaced from each other with wiring channel regions between adjacent basic cell forming regions. The wiring includes at least first-layer wiring lines arranged overlying the wiring channel regions; second-layer wiring lines overlying both the basic cell forming regions and the wiring channel regions; and third-layer wiring lines overlying both the basic cell forming regions and the wiring channel regions. The first-, second- and third-layer wiring lines respectively extend in first, second and third directions, the second direction being different from the first direction.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: October 22, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Owada, Hiroyuki Akimori, Takahisa Nitta, Tohru Kobayashi, Shunji Sasabe, Mikinori Kawaji, Osamu Kasahara
  • Patent number: 5027188
    Abstract: A multi-layered structure of wirings on a semiconductor substrate has been employed in conjuction with the increase in the integration density of semiconductor integrated circuit devices. In the invention, dummy patterns made of the same material as an Al wiring layer for compensating for any step or level gradation are disposed in the regions below bump electrodes and in the proximity thereof in order to reduce any defects inherent to a multi-layered structure that occur in CCB bump electrodes formed on the multi-layered wirings and at pads as the base layer of the former.
    Type: Grant
    Filed: September 13, 1989
    Date of Patent: June 25, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Owada, Kaoru Oogaya, Tohru Kobayashi, Mikinori Kawaji