Patents by Inventor Oded Bialer

Oded Bialer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200333457
    Abstract: A method and system involve obtaining reflected signals in a radar system using a first one-dimensional array of antenna elements and a second one-dimensional array of antenna elements. The reflected signals result from reflection of transmitted signals from the radar system by one or more objects. The method includes processing the reflected signals obtained using the first one-dimensional array of antenna elements to obtain a first array of angle of arrival likelihood values in a first plane, and processing the reflected signals obtained using the second one-dimensional array of antenna elements to obtain a second array of angle of arrival likelihood values. A four-dimensional image indicating a range, relative range rate, the first angle of arrival, and the second angle of arrival for each of the one or more objects is obtained.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Inventors: Oded Bialer, Amnon Jonas
  • Publication number: 20200326417
    Abstract: A system and method using a multi-node radar system involve receiving reflected signals at each node of the multi-node radar system, the reflected signals resulting from reflection of transmitted signals by one or more objects, and generating velocity lines associated with each of the reflected signals received at each of the nodes, each velocity line being derived from a radial velocity Vr and an angle of arrival ? determined from the reflected signal received at the node. The method also includes determining one or more intersection points of the velocity lines, and estimating a velocity of each of the one or more objects based on the one or more intersection points. Each intersection point corresponds with the velocity for one of the one or more objects and the velocity is a relative velocity vector between the one of the one or more objects and the radar system.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Inventors: David Shapiro, Oded Bialer, Amnon Jonas
  • Publication number: 20200326408
    Abstract: A radar system may include an antenna structured to transmit a radar signal and receive reflected radar signals from targets and a processor operably connected to the antenna. The radar system may receive a first reflected signal, having a first arrival angle, at a first time. The radar system may receive a second reflected signal, having a second arrival angle at a second time. The second arrival angle may be equal to the first arrival angle plus an angle offset calculated based on a velocity hypothesis. The radar system may translate the first vector by applying the angle offset, thereby calculating a translated first vector. The radar system may calculate a beamforming spectrum based on the translated first vector and the second vector. The radar system may identify peaks in the beamforming spectrum to identify angular positions of multiple targets.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Inventors: Oded Bialer, Sammy Kolpinizki
  • Publication number: 20200309899
    Abstract: A system and method to eliminate false detections in a radar system involve arranging an array of antenna elements into two or more sub-arrays with a spacing between adjacent ones of the antenna elements of one of the two or more sub-arrays being different than a spacing between adjacent ones of the antenna elements of at least one other of the two or more sub-arrays. The method includes receiving reflected signals at the two or more sub-arrays resulting from transmitting transmit signals from the antenna elements of the two or more sub-arrays, and processing the reflected signals to distinguish an actual angle from the radar system to an object that contributed to the reflected signals from ambiguous angles at which the false detections of the object are obtained. A location of the object is determined as a result of the processing.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 1, 2020
    Inventors: Amnon Jonas, Oded Bialer
  • Patent number: 10775479
    Abstract: A vehicle, radar system of the vehicle and method of operating a radar system. The radar system includes a first sensor that generates a first chirp signal; a second sensor for generating a second chirp signal and which received reflected signals. One of the first sensor and second sensor receives a signal that includes a first reflected signal related to the first chirp signal and a second reflected signal related to the second chirp signal. A processor multiplies the received signal by one of the first chirp signal and the second chirp signal to obtain a desired signal indicative of one of the first reflected signal and the second reflected signal and an interference signal indicative of the other of the first reflected signal and the second reflected signal, and applies a filter to the mixed signal to separate the interference signal from the desired signal.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: September 15, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Amnon Jonas, Oded Bialer
  • Patent number: 10754008
    Abstract: A vehicle radar system, such as a multiple input multiple output (MIMO) radar system, for estimating a Doppler frequency shift and a method of using the same. In one example, a modulated signal is mixed with an orthogonal code sequence and is transmitted by a transmit antenna array with a plurality of transmitting antennas. The signals reflect off of a target object and are received by a receive antenna array with a plurality of receiving antennas. Each of the received signals, which likely includes a Doppler frequency shift, is processed and mixed with a number of frequency shift hypotheses that are intended to offset the Doppler frequency shift and result in a series of correlation values. The frequency shift hypothesis with the highest correlation value is selected and used to correct for the Doppler frequency shift so that more accurate target object parameters, such as velocity, can be obtained.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: August 25, 2020
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, SILANTRIX LTD.
    Inventors: Dani Raphaeli, Oded Bialer, Igal Bilik
  • Publication number: 20200249314
    Abstract: A system and method to use deep learning for super resolution in a radar system include obtaining first-resolution time samples from reflections based on transmissions by a first-resolution radar system of multiple frequency-modulated signals. The first-resolution radar system includes multiple transmit elements and multiple receive elements. The method also includes reducing resolution of the first-resolution time samples to obtain second-resolution time samples, implementing a matched filter on the first-resolution time samples to obtain a first-resolution data cube and on the second-resolution time samples to obtain a second-resolution data cube, processing the second-resolution data cube with a neural network to obtain a third-resolution data cube, and training the neural network based on a first loss obtained by comparing the first-resolution data cube with the third-resolution data cube. The neural network is used with a second-resolution radar system to detect one or more objects.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 6, 2020
    Inventors: Yaron Eshet, Igal Bilik, Oded Bialer
  • Publication number: 20200249315
    Abstract: Deep learning in a radar system includes obtaining unaliased time samples from a first radar system. A method includes under-sampling the un-aliased time samples to obtain aliased time samples of a first configuration, matched filtering the un-aliased time samples to obtain an un-aliased data cube and the aliased time samples to obtain an aliased data cube, and using a first neural network to obtain a de-aliased data cube. A first neural network is trained to obtain a trained first neural network. The under-sampling of the un-aliased time samples is repeated to obtain second aliased time samples of a second configuration. The method includes training a second neural network to obtain a trained second neural network, comparing results to choose a selected neural network corresponding with a selected configuration, and using the selected neural network with a second radar system that has the selected configuration to detect one or more objects.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 6, 2020
    Inventors: Yaron Eshet, Oded Bialer, Igal Bilik
  • Patent number: 10690743
    Abstract: A system and method to resolve angle of arrival (AOA) ambiguity in a radar system include receiving received reflections at a plurality of transceiver nodes. Each transceiver node among the plurality of transceiver nodes of the radar system receives one or more of the received reflections at respective one or more receive elements. The method includes determining candidate AOAs {circumflex over (?)}i based on phases differences in the received reflections at the plurality of transceiver nodes, and determining Doppler frequencies fdi based on the received reflections. An estimated AOA {circumflex over (?)} is selected from among the candidate AOAs {circumflex over (?)}i based on matching metrics ?i between the Doppler frequencies and the candidate AOAs {circumflex over (?)}i.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: June 23, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Oded Bialer
  • Patent number: 10690769
    Abstract: A method and system to determine angle of arrival of a target include one or more transmitters, one or more receivers, and one local oscillator to provide a local reference signal each in two or more transceiver nodes. The system also includes a controller to determine obtained phase differences for each of the two or more transceiver nodes. Each of the obtained phase differences is between a signal transmitted by one of the one or more transmitters and received by one of the one or more receivers of a same one of the two or more transceiver nodes. The controller estimates the angle of arrival of the target based on the obtained phase differences determined for the two or more transceiver nodes.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: June 23, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Oded Bialer
  • Patent number: 10627481
    Abstract: A system and method are provided for processing echo signals reflected from one of more targets in a radar field-of-view. The method includes receiving echo signals reflected from one or more targets in the radar field-of-view in response to a sequence of transmit pulses; generating a received signal vector containing samples from the received echo signals; and applying the received signal vector to a set of filters configured to calculate a Doppler spectrum for a set of Doppler frequencies to which each filter is tuned, wherein an integration processing time for each filter varies relative to the Doppler frequency of each filter.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: April 21, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATION LLC
    Inventors: Oded Bialer, Igal Bilik
  • Publication number: 20200096608
    Abstract: Systems, vehicles, and techniques are provided to classify reflection detection points in a sensing system. A reflection detection point can be classified as an apparent reflection or a physical reflection. In some embodiments, a beamforming map can be generated using a response function of an antenna array and data representative of electromagnetic signals received at the antenna array. Multiple reflection detection points can be detected using at least the beamforming map. A second beamforming distribution map also can be generated, using at least the data and a second response function of the array of antennas. The second response function includes minima at respective reflection points. A ratio between (i) a first amplitude of a reflection detection point in the second beamforming map and (ii) a second amplitude of the reflection point in the first beamforming map permits classifying the reflection detection point as an apparent reflection or a physical reflection.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: Oded Bialer, Tom Tirer
  • Publication number: 20200094846
    Abstract: Systems, vehicles, and techniques are provided for the estimation of a linear velocity vector of an object. In some embodiments, a technique can include receiving first data indicative of first locations relative to an object at a first instant during movement of the object, and receiving second data indicative of second locations relative to the object at a second instant during the movement of the object. The technique also can include transforming the first data into third data corresponding to the second instant using at least one velocity vector hypothesis for a velocity of the object. The technique can further include solving an optimization problem with respect to a geometric volume of a convex hull of a union of the second data and the third data, and generating an estimate of a velocity of the object using a solution of the optimization problem.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: Tom Tirer, Oded Bialer
  • Patent number: 10591584
    Abstract: A system and method perform calibration of a radar system on a mobile platform. A position of the platform is obtained along with a relative position of one or more stationary objects from the platform using the position of the platform and a mapping algorithm as ground truth and one or more radar parameters regarding the one or more stationary objects using the radar system, the one or more radar parameters including an angle estimate. The method includes determining a correction matrix based on the one or more parameters and the ground truth, and obtaining corrected received signals from subsequent received signals of the radar system based on the correction matrix.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: March 17, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Oded Bialer, Igal Bilik
  • Publication number: 20200081114
    Abstract: A vehicle, radar system and method of determining an angle of arrival of an object is disclosed. A radar array generates a linear frequency modulated source signal and includes a first channel and a second channel for receiving a reflection of the source signal from the object. A processor obtains a channel response for the first radar channel and for the second radar channel over a bandwidth of the source signal, partitions the frequency band into a plurality of frequency sub-bands, determines a variation between the first and second channel responses for a selected frequency sub-band, receives a reflection of the source signal at the first channel and at the second channel, corrects at least the second channel within the frequency sub-band using the determined variation, and determines an angle of arrival for the object based on the correction within the frequency sub-band.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 12, 2020
    Inventors: Oded Bialer, Igal Bilik
  • Publication number: 20200049796
    Abstract: A vehicle, radar system and method of operating a radar is disclosed. The radar system includes a radar array and a processor. The radar array includes at least a first radar node and a second radar node, with each of the first radar node and the second radar node having a plurality of subnodes. The processor determines a first far-field parameter measurement for an object for a first node of the radar using sub-nodes of the first node, determines a second far-field parameter measurement for the object for a second node of the radar using sub-nodes of the second node, and obtains a joint parameter measurement for the object by combining the first far-field parameter measurement with the second far-field parameter measurement by correcting for a near-field phase difference between the first node and the second node.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Oded Bialer, Amnon Jonas, Samuel Kolpinizki
  • Publication number: 20200049811
    Abstract: A vehicle, system and method of estimating a velocity of an object with respect to the vehicle is disclosed. The system includes a plurality of radars associated with the vehicle and a processor. The plurality of radars provide a coarse estimate of the velocity. The processor obtains a plurality of velocity hypotheses based on the coarse estimate of the velocity of the object, determines a likelihood for each of the plurality of velocity hypotheses, and chooses a velocity hypothesis having as the estimate of velocity based on the determined likelihood.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Oded Bialer, Amnon Jonas, Tom Tirer
  • Publication number: 20200049808
    Abstract: A vehicle, radar system for a vehicle and method of estimating a cross-transmission range of an object. The radar system includes a first radar, a second radar and a processor. The first radar transmits a test signal. The second radar is separated from the first radar by a selected distance and receive a total signal that includes the test signal received directly from the first radar and a reflection of the test signal from the target. The processor performs a non-linear operation on the total signal to obtain a cross-correlation term of the directly received test signal and the reflection signal, and estimate a cross-transmission range of the object from the cross-correlation term.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Oded Bialer, Amnon Jonas
  • Patent number: 10551493
    Abstract: A vehicle, a radar system for the vehicle, and method of driving the vehicle. A radar array having plurality of radar nodes is arranged along the vehicle. Each radar node includes a first transmitter at one end of the node, a second transmitter at a second end of the node and a plurality of receivers aligned between the first transmitter and the second transmitter. At least one of an aperture length of the nodes and a spacing between the nodes is a variable parameter. A processor activates a transmitter of the radar array to generate a test pulse, receive, at a receiver of the radar array, a reflection of the test pulse from an object, and determines an angular location of the object from the reflection of the test pulse. A trajectory of the vehicle can be changed using the determined angular location of the object.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: February 4, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Oded Bialer, Amnon Jonas, Tom Tirer
  • Publication number: 20200033469
    Abstract: A radar system includes two or more nodes. Each node includes one or more transmit antennas and one or more receive antennas. The radar system also includes a processor to obtain received signals at each of the two or more nodes, estimate an angle of arrival of each target identified based on the received signals, estimate an offset of each of the two or more nodes from a known location, and compensate for the offsets in the process of estimating the angle of arrival for subsequent targets in the received signals.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Inventors: Amnon Jonas, Oded Bialer