Patents by Inventor Ofer Saphier

Ofer Saphier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220257353
    Abstract: A method comprises obtaining reference data about a 3D calibration object, the reference data comprising known coordinates for a plurality of points on the object, and obtaining measurement data comprising measurements for the plurality of points on the object, the measurement data having been generated based on scanning of the object by an uncalibrated intraoral scanner. The method comprises comparing the measurement data to the reference data to determine differences therebetween and applying the determined differences between the measurement data and the reference data for the plurality of points to a function to generate a compensation model that compensates for one or more inaccuracies of the intraoral scanner. The compensation model is then stored, wherein the compensation model causes the intraoral scanner to be a calibrated intraoral scanner and is usable to correct measurement errors of the intraoral scanner caused by the one or more inaccuracies of the intraoral scanner.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 18, 2022
    Inventors: Tal Verker, Adi Levin, Ofer Saphier, Maayan Moshe
  • Patent number: 11357603
    Abstract: Methods and apparatuses for generating a model of a subject's teeth. Described herein are intraoral scanning methods and apparatuses for generating a three-dimensional model of a subject's intraoral region (e.g., teeth) including both surface features and internal features. These methods and apparatuses may be used for identifying and evaluating lesions, caries and cracks in the teeth. Any of these methods and apparatuses may use minimum scattering coefficients and/or segmentation to form a volumetric model of the teeth.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: June 14, 2022
    Assignee: Align Technology, Inc.
    Inventors: Gilad Elbaz, Erez Lampert, Yossef Atiya, Avi Kopelman, Ofer Saphier, Maayan Moshe, Shai Ayal, Michael Sabina, Eric Kuo, Assaf Weiss, Doron Malka, Eliahou Franklin Nizard, Ido Tishel
  • Publication number: 20220023015
    Abstract: A system comprises alight source to provide light, an optical system comprises focusing optics to focus the light onto a focal surface, a detector to measure returning light that is reflected off of a three dimensional object, a translation mechanism to displace the focal surface along an imaging axis defined by the optical path, and one or more processor. The one or more processor is to generate measurement data comprising coordinates of a plurality of surface points of the three dimensional object based on the measured returning light; adjust the coordinates of the subset of the plurality of surface points along up to three axes to correct the measurement data so as to remove inaccuracies caused by changes in magnification at the focal surface; and generate a three dimensional model of the three dimensional object using corrected measurement data.
    Type: Application
    Filed: October 1, 2021
    Publication date: January 27, 2022
    Inventors: Tal Verker, Adi Levin, Ofer Saphier, Maayan Moshe
  • Patent number: 11232573
    Abstract: Methods and apparatuses (including systems and devices) for modifying a three-dimensional (3D) model of a subject's oral cavity to determine individual components such as teeth, gingiva, tongue, palate, etc. In some implementations one or more automated machine learning agents may modify one or more subsets of 3D models of the subject's oral cavity using height map data to identify, segment and/or modify to mesh regions of a 3D model constructed from a plurality of 2D images of the subject's dental cavity.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: January 25, 2022
    Assignee: Align Technology, Inc.
    Inventors: Chad C. Brown, Yun Gao, Pavel Agniashvili, Avraham Zulti, Jonathan Coslovsky, Christopher E. Cramer, Roman Gudchenko, Ofer Saphier, Adi Levin, Maayan Moshe, Doron Malka
  • Publication number: 20210353154
    Abstract: A method of generating a 3D model includes: determining a 3D surface comprising a preparation tooth using a first plurality of intraoral scans generated by an intraoral scanner at a first time; receiving one or more additional intraoral scans of the preparation tooth that were generated by the intraoral scanner at a second time; determining a change to one or more portions of the preparation tooth between the three-dimensional surface and the one or more additional intraoral scans; determining, based at least in part on the change to the preparation tooth, whether to use a) the 3D surface, b) data from the one or more additional intraoral scans or c) a combination of the 3D surface and the data from the one or more additional intraoral scans to depict one or more portions of the preparation tooth; and generating the 3D model comprising the preparation tooth.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: Ofer Saphier, Pavel Agniashvili, Moti Ben-Dov, Ran Katz, Avi Kopelman, Maxim Volgin, Doron Malka, Avraham Zulti, Pavel Veryovkin, Maayan Moshe, Ido Tishel, Adi Levin, Shai Farkash, Inna Karapetyan, Dina Bova, Edi Fridman, Jonathan Coslovsky
  • Publication number: 20210353153
    Abstract: A processing device receives a plurality of intraoral scans of a dental arch. The processing device determines, from the plurality of intraoral scans, a first set of intraoral scans that depict a restorative object and a second set of intraoral scans that fail to depict any restorative object. The processing device generates a multi-resolution three-dimensional model of the dental arch, wherein a first portion of the multi-resolution three-dimensional model is generated from the first set of intraoral scans, has a first resolution and represents the restorative object, and wherein a second portion of the multi-resolution three-dimensional model is generated from the second set of intraoral scans, has a second resolution and represents a remainder of the dental arch, wherein the first resolution is greater than the second resolution.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: Ofer Saphier, Pavel Agniashvili, Moti Ben-Dov, Ran Katz, Avi Kopelman, Maxim Volgin, Doron Malka, Avraham Zulti, Pavel Veryovkin, Maayan Moshe, Ido Tishel, Adi Levin, Shai Farkash, Inna Karapetyan, Dina Bova, Edi Fridman, Jonathan Coslovsky
  • Publication number: 20210353152
    Abstract: A processing device may receive a plurality of intraoral scans of the patient that were generated by an intraoral scanner, determine a three-dimensional surface of at least a portion of one or more dental arch of the patient using the plurality of intraoral scans, automatically determine whether a restorative dental object is represented in at least one of the three-dimensional surface or one or more intraoral scans of the plurality of intraoral scans, and automatically generate a prescription for treating the one or more teeth based at least in part on at least one of a) a presence or absence of a restorative dental object in at least one of the three-dimensional surface or the one or more intraoral scans or b) a location of the restorative dental object in the one or more dental arch of the patient.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: Ofer Saphier, Pavel Agniashvili, Moti Ben-Dov, Ran Katz, Avi Kopelman, Maxim Volgin, Doron Malka, Avraham Zulti, Pavel Veryovkin, Maayan Moshe, Ido Tishel, Adi Levin, Shai Farkash, Inna Karapetyan, Dina Bova, Edi Fridman, Jonathan Coslovsky
  • Publication number: 20210321872
    Abstract: A method of intraoral scanning includes receiving a first one or more intraoral scans of a patient's oral cavity; automatically determining, based on processing of the first one or more intraoral scans, a first scanning role associated with the first one or more intraoral scans, wherein the first scanning role is a first one of an upper dental arch role, a lower dental arch role or a bite role; and determining a first three-dimensional surface associated with the first scanning role.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 21, 2021
    Inventors: Ofer Saphier, Pavel Agniashvili, Moti Ben-Dov, Ran Katz, Avi Kopelman, Maxim Volgin, Doron Malka, Avraham Zulti, Pavel Veryovkin, Maayan Moshe, Ido Tishel, Adi Levin, Shai Farkash, Inna Karapetyan, Dina Bova, Edi Fridman, Jonathan Coslovsky
  • Patent number: 11135039
    Abstract: A non-transitory medium includes instructions for generating a three-dimensional virtual model of an intraoral object by receiving surface scan data of the intraoral object while changing a position of at least one lens of focusing optics of an intraoral scanner, wherein the surface scan data comprises data for a plurality of points of the intraoral object, and adjusting the data for one or more of the plurality of points to compensate for one or more inaccuracies associated with at least one of a) different temperatures or b) different positions of the at least one lens. A three-dimensional virtual model of the intraoral object is generated using the adjusted data.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: October 5, 2021
    Assignee: Align Technology, Inc.
    Inventors: Tal Verker, Adi Levin, Ofer Saphier, Maayan Moshe
  • Patent number: 11113803
    Abstract: Apparatus for inspection includes an imaging assembly, including a plurality of cameras, which are mounted in different, respective locations in the imaging assembly and are configured to capture respective images of a sample. A motion assembly is configured to move at least one of the imaging assembly and the sample so as to cause the imaging assembly to scan the sample with a scan accuracy that is limited by a predetermined position tolerance. An image processor is coupled to receive and process the images captured by the cameras so as to locate a defect in the sample with a position accuracy that is finer than the position tolerance.
    Type: Grant
    Filed: January 11, 2009
    Date of Patent: September 7, 2021
    Assignee: Orbotech Ltd.
    Inventors: Ofer Saphier, Israel Shappira, Yaakov Davidi
  • Publication number: 20210205054
    Abstract: Methods and apparatuses for taking, using and displaying three-dimensional (3D) volumetric models of a patient's dental arch. A 3D volumetric model may include surface (e.g., color) information as well as information on internal structure, such as near-infrared (near-IR) transparency values for internal structures including enamel and dentin.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Michael SABINA, Avi KOPELMAN, Eric KUO, Gilad ELBAZ, Assaf WEISS, Doron MALKA, Ofer SAPHIER, Eliahou Franklin NIZARD, Ido TISHEL, Shai AYAL, Maayan MOSHE
  • Publication number: 20210196152
    Abstract: Apparatuses (e.g., systems, devices, etc.) and method for scanning both a subject's intraoral cavity as well as detecting, using the same scanner, e.g., wand, finger gestures and executing command controls based on these detected finger gestures.
    Type: Application
    Filed: December 30, 2020
    Publication date: July 1, 2021
    Inventors: Ofer SAPHIER, Eliran DAFNA, Tal LEVY
  • Patent number: 11013581
    Abstract: Methods and apparatuses for taking, using and displaying three-dimensional (3D) volumetric models of a patient's dental arch. A 3D volumetric model may include surface (e.g., color) information as well as information on internal structure, such as near-infrared (near-IR) transparency values for internal structures including enamel and dentin.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: May 25, 2021
    Assignee: Align Technology, Inc.
    Inventors: Michael Sabina, Avi Kopelman, Eric Kuo, Gilad Elbaz, Assaf Weiss, Doron Malka, Ofer Saphier, Eliahou Franklin Nizard, Ido Tishel, Shai Ayal, Maayan Moshe
  • Publication number: 20210145551
    Abstract: A non-transitory medium includes instructions for generating a three-dimensional virtual model of an intraoral object by receiving surface scan data of the intraoral object while changing a position of at least one lens of focusing optics of an intraoral scanner, wherein the surface scan data comprises data for a plurality of points of the intraoral object, and adjusting the data for one or more of the plurality of points to compensate for one or more inaccuracies associated with at least one of a) different temperatures or b) different positions of the at least one lens. A three-dimensional virtual model of the intraoral object is generated using the adjusted data.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Tal Verker, Adi Levin, Ofer Saphier, Maayan Moshe
  • Publication number: 20210145552
    Abstract: A non-transitory medium includes instructions for generating a three-dimensional virtual model of an intraoral object by receiving surface scan data of the intraoral object while changing a position of at least one lens of focusing optics of an intraoral scanner, wherein the surface scan data comprises data for a plurality of points of the intraoral object, and adjusting the data for one or more of the plurality of points to compensate for one or more inaccuracies associated with changes of a shape of a focusing surface. A three-dimensional virtual model of the intraoral object is generated using the adjusted data.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Tal Verker, Adi Levin, Ofer Saphier, Maayan Moshe
  • Patent number: 11007039
    Abstract: A non-transitory medium includes instructions for generating a three-dimensional virtual model of an intraoral object by receiving surface scan data of the intraoral object while changing a position of at least one lens of focusing optics of an intraoral scanner, wherein the surface scan data comprises data for a plurality of points of the intraoral object, and adjusting the data for one or more of the plurality of points to compensate for one or more inaccuracies associated with changes of a shape of a focusing surface. A three-dimensional virtual model of the intraoral object is generated using the adjusted data.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: May 18, 2021
    Assignee: Align Technology, Inc.
    Inventors: Tal Verker, Adi Levin, Ofer Saphier, Maayan Moshe
  • Publication number: 20210137653
    Abstract: A method of generating a virtual 3D model of a dental arch is provided. The method includes receiving intraoral scans of a dental arch, determining a first depth of a first intraoral 3D surface in a first intraoral scan, and determining a second depth of a second intraoral 3D surface in the first intraoral scan, and wherein there is a fixed distance between the first intraoral 3D surface and the second intraoral 3D surface in the first intraoral scan. The method further includes stitching together the intraoral scans and generating a virtual 3D model of the dental arch from the intraoral scans, wherein the fixed distance between the first intraoral 3D surface and the second intraoral 3D surface is included in the virtual 3D model.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 13, 2021
    Inventors: Ofer Saphier, Avi Kopelman
  • Publication number: 20210128282
    Abstract: Methods and apparatuses for generating a model of a subject's teeth. Described herein are intraoral scanning methods and apparatuses for generating a three-dimensional model of a subject's intraoral region (e.g., teeth) including both surface features and internal features. These methods and apparatuses may be used for identifying and evaluating lesions, caries and cracks in the teeth. Any of these methods and apparatuses may use minimum scattering coefficients and/or segmentation to form a volumetric model of the teeth.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Inventors: Gilad ELBAZ, Erez LAMPERT, Yossef ATIYA, Avi KOPELMAN, Ofer SAPHIER, Maayan MOSHE, Shai AYAL, Michael SABINA, Eric KUO, Assaf WEISS, Doron MALKA, Eliahou Franklin NIZARD, Ido TISHEL
  • Publication number: 20210100642
    Abstract: In embodiments, a processing device detects a margin line in a model of a preparation from one or more images. The processing device determines, for each segment of a plurality of segments of the margin line, a quality score for the segment. The processing device determines that a segment of the margin line has a quality score that is below a quality threshold, wherein the segment of the margin line was generated based on a first set of images. Responsive to determining that the segment of the margin line has the quality score that is below the quality threshold, the processing devices updates the three-dimensional model of the preparation by replacing a portion of the three-dimensional model associated with the segment of the margin line with image data from at least one of a new image or a second set of images.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Inventors: Assaf Weiss, Maxim Volgin, Pavel Agniashvili, Chad Clayton Brown, Alexander Raskhodchikov, Avi Kopelman, Michael Sabina, Moti Ben-Dov, Shai Farkash, Igor Makiewsky, Maayan Moshe, Ofer Saphier
  • Publication number: 20210100643
    Abstract: In embodiments, a processing device generates a three-dimensional model of a dental site from scan data, the three-dimensional model comprising a representation of a tooth, wherein a portion of the three-dimensional model comprises an interfering surface that obscures a portion of the tooth. The processing device receives or generates an image of the tooth, wherein the image depicts the interfering surface. The processing device processes the image to generate a modified image, wherein the portion of the tooth that was obscured by the interfering surface in the image is shown in the modified image. The processing device updates the three-dimensional model of the dental site by replacing, using the modified image, the portion of the three-dimensional model that comprises the interfering surface that obscures the portion of the tooth, wherein the portion of the tooth that was obscured in the three-dimensional model is shown in an updated three-dimensional model.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Inventors: Assaf Weiss, Maxim Volgin, Pavel Agniashvili, Chad Clayton Brown, Alexander Raskhodchikov, Avi Kopelman, Michael Sabina, Moti Ben-Dov, Shai Farkash, Igor Makiewsky, Maayan Moshe, Ofer Saphier