Patents by Inventor Olav Solgaard

Olav Solgaard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100120023
    Abstract: Method and apparatus which uses harmonic cantilevers, such as used in atomic force microscopy, to detect variations in the attractive and repulsive forces on a solid surface as a result of macromolecular binding, for example, hybridization of a single stranded DNA molecule attached to the surface with another DNA molecule. The complexed macromolecule is less flexible than an uncomplexed molecule. It will typically have more negative charge due to amino acids or DNA monomers. Both stiffness of the surface and the attractive capillary forces will change after binding and may be detected. By scanning the harmonic cantilever across a surface with macromolecules attached in tapping-mode and by recording the signals at the high frequency vibrations provided by harmonic cantilever, complexed molecules on a surface may be identified and quantified.
    Type: Application
    Filed: April 13, 2006
    Publication date: May 13, 2010
    Inventors: Ozgur Sahin, Calvin F. Quate, Olav Solgaard
  • Publication number: 20100092125
    Abstract: An optical structure on an optical fiber and a method of fabrication is provided. The optical structure includes an end of an optical fiber and a layer formed on the end of the optical fiber. The layer comprises one or more first portions having a first optical pathlength in a direction perpendicular to the layer and one or more second portions having a second optical pathlength in the direction perpendicular to the layer, the second optical pathlength different from the first optical pathlength.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 15, 2010
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J.F. Digonnet, Gordon S. Kino, Olav Solgaard, Shrestha Basu Mallick, Onur Can Akkaya
  • Patent number: 7630589
    Abstract: An acoustic sensor and a method of fabricating an acoustic sensor are provided. The acoustic sensor includes at least one photonic crystal structure and an optical fiber having an end optically coupled to the at least one photonic crystal structure. The acoustic sensor further includes a structural portion mechanically coupled to the at least one photonic crystal structure and to the optical fiber. The at least one photonic crystal structure, the optical fiber, and the structural portion substantially bound a region having a volume such that a frequency response of the acoustic sensor is generally flat in a range of acoustic frequencies.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: December 8, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon S. Kino, Olav Solgaard, Shrestha Basu Mallick, Onur Can Akkaya
  • Publication number: 20090227040
    Abstract: Method and apparatus which uses harmonic cantilevers, such as used in atomic force microscopy, to detect variations in the attractive and repulsive forces on a solid surface as a result of macromolecular binding, for example, hybridization of a single stranded DNA molecule attached to the surface with another DNA molecule. The complexed macromolecule is less flexible than an uncomplexed molecule. It will typically have more negative charge due to amino acids or DNA monomers. Both stiffness of the surface and the attractive capillary forces will change after binding and may be detected. The present methods and materials enable ultraflat surfaces for the macromolecule deposition, and may include the use of a gold-coated mica substrate and a self-assembling monolayer.
    Type: Application
    Filed: October 24, 2007
    Publication date: September 10, 2009
    Inventors: Ozgur Sahin, Calvin F. Quate, Olav Solgaard, Henrik H. J. Persson
  • Publication number: 20090208163
    Abstract: An acoustic sensor includes at least one photonic crystal structure having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one photonic crystal structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 20, 2009
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J.F. Digonnet, Gordon S. Kino
  • Publication number: 20090169220
    Abstract: Optical signals are passed in an optical medium using an approach that facilitates the mitigation of interference. According to an example embodiment, a filtering-type approach is used with an optical signal conveyed in an optical fiber, such as a multimode fiber (MMF) or a multimode waveguide. Adaptive spatial domain signal processing, responsive to a feedback signal indicative of data conveyed in the multimode waveguide, is used to mitigate interference in optical signals conveyed in the multimode waveguide.
    Type: Application
    Filed: March 11, 2009
    Publication date: July 2, 2009
    Inventors: Joseph M. Kahn, Mark A. Horowitz, Olav Solgaard, Shanhui Fan
  • Patent number: 7526148
    Abstract: An acoustic sensor includes at least one photonic crystal structure having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing substantially surrounding the at least one photonic crystal structure and mechanically coupled to the at least one photonic crystal structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 28, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino
  • Publication number: 20090097811
    Abstract: A method is disclosed for forming a photonic crystal in a homogeneous layer of material. The method enables the fabrication of 1D, 2D, or 3D photonic crystals. Photonic crystals in accordance with embodiments of the present invention exhibit low temperature sensitivity and low device curvature. In some embodiments, photonic crystals in accordance with embodiments of the present invention are integrated with mechanical elements, such as micromechanical, nanomechanical, microelectronic, and microfluidics devices and systems.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 16, 2009
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sanja Hadzialic, Olav Solgaard
  • Patent number: 7509002
    Abstract: Optical signals are passed in an optical medium using an approach that facilitates the mitigation of interference. According to an example embodiment, a filtering-type approach is used with an optical signal conveyed in an optical fiber, such as a multimode fiber (MMF) or a multimode waveguide. Adaptive spatial domain signal processing, responsive to a feedback signal indicative of data conveyed in the multimode waveguide, is used to mitigate interference in optical signals conveyed in the multimode waveguide.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: March 24, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Joseph M. Kahn, Mark A. Horowitz, Olav Solgaard, Shanhui Fan
  • Patent number: 7463420
    Abstract: This invention relates to a configurable diffractive optical element comprising an array of diffractive sub-elements having a reflective surface, wherein each sub-element has a controllable position with a chosen range, and in which a number of sub-elements are provided with a reflective grating with a number of chosen spectral characteristics.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: December 9, 2008
    Assignees: Sinvent AS, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hakon Sagberg, Ib-Rune Johansen, Odd Lovhaugen, Olav Solgaard, Matthieu Lacolle
  • Patent number: 7451638
    Abstract: A harmonic cantilever for use in an atomic force microscope includes a cantilever arm and a probe tip. The cantilever arm has a shape selected to tune the fundamental resonance frequency or a resonance frequency of a selected higher order mode so that the fundamental and higher-order resonance frequencies have an integer ratio or near integer ratio. In one embodiment, the cantilever arm can be shaped to tune the fundamental resonance frequency. Alternately, the cantilever arm can include a geometric feature for tuning the resonance frequency of the fundamental mode or the selected higher order mode. An imaging method using the harmonic cantilever is disclosed whereby signals at the higher harmonics are measured to determine the material properties of a sample. In other embodiment, a cantilever includes a probe tip positioned at a location of minimum displacement of unwanted harmonics for suppressing signals associated with the unwanted harmonics.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: November 18, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ozgur Sahin, Abdullah Atalar, Calvin F. Quate, Olav Solgaard
  • Publication number: 20080226217
    Abstract: An acoustic sensor and a method of fabricating an acoustic sensor are provided. The acoustic sensor includes at least one photonic crystal structure and an optical fiber having an end optically coupled to the at least one photonic crystal structure. The acoustic sensor further includes a structural portion mechanically coupled to the at least one photonic crystal structure and to the optical fiber. The at least one photonic crystal structure, the optical fiber, and the structural portion substantially bound a region having a volume such that a frequency response of the acoustic sensor is generally flat in a range of acoustic frequencies.
    Type: Application
    Filed: January 9, 2008
    Publication date: September 18, 2008
    Inventors: Onur Kilic, Michel J.F. Digonnet, Gordon S. Kino, Olav Solgaard
  • Patent number: 7412127
    Abstract: We introduce a mechanically tunable photonic crystal structure consisting of coupled photonic crystal slabs. Using both analytic theory, and first-principles finite-difference time-domain simulations, we demonstrate that the transmission and reflection coefficients for light normally incident upon such structures can be highly sensitive to nano-scale variations in the spacing between the slabs. Moreover, by specifically configuring the photonic crystal structures, the high sensitivity can be preserved in spite of significant fabrication-related disorders. We expect such a structure to play important roles in micro-mechanically tunable optical sensors and filters.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: August 12, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Wonjoo Suh, Mehmet Fatih Yanik, Olav Solgaard, Shanhui Fan
  • Patent number: 7404314
    Abstract: An atomic force microscope based apparatus for examining a sample includes a cantilever having a cantilever arm and a probe tip where the probe tip is offset laterally from a longitudinal axis of torsion of the cantilever arm, an oscillator that drives the cantilever into oscillation in a flexural mode to cause the probe tip to repeatedly interact with the sample where the tip-sample interaction of the laterally offset probe tip excites torsional motion of the cantilever, and a detection system that detects torsional motion of the cantilever in response to the tip-sample interaction.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 29, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ozgur Sahin, Calvin F. Quate, Olav Solgaard
  • Publication number: 20080069561
    Abstract: Optical signals are passed in an optical medium using an approach that facilitates the mitigation of interference. According to an example embodiment, a filtering-type approach is used with an optical signal conveyed in an optical fiber, such as a multimode fiber (MMF) or a multimode waveguide. Adaptive spatial domain signal processing, responsive to a feedback signal indicative of data conveyed in the multimode waveguide, is used to mitigate interference in optical signals conveyed in the multimode waveguide.
    Type: Application
    Filed: November 14, 2007
    Publication date: March 20, 2008
    Inventors: Joseph Kahn, Mark Horowitz, Olav Solgaard, Shanhui Fan
  • Publication number: 20080041143
    Abstract: An atomic force microscope based apparatus for examining a sample includes a cantilever having a cantilever arm and a probe tip where the probe tip is offset laterally from a longitudinal axis of torsion of the cantilever arm, an oscillator that drives the cantilever into oscillation in a flexural mode to cause the probe tip to repeatedly interact with the sample where the tip-sample interaction of the laterally offset probe tip excites torsional motion of the cantilever, and a detection system that detects torsional motion of the cantilever in response to the tip-sample interaction.
    Type: Application
    Filed: October 23, 2007
    Publication date: February 21, 2008
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ozgur Sahin, Calvin Quate, Olav Solgaard
  • Publication number: 20080034866
    Abstract: An optical resonator includes a reflective element and an optical fiber. The optical fiber is positioned relative to the reflective element such that light emitted from the optical fiber is reflected by the reflective element. The optical resonator has an optical resonance with a resonance lineshape that is asymmetric as a function of wavelength.
    Type: Application
    Filed: November 27, 2006
    Publication date: February 14, 2008
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon S. Kino, Olav Solgaard
  • Patent number: 7327914
    Abstract: Optical signals are passed in an optical medium using an approach that facilitates the mitigation of interference. According to an example embodiment, a filtering-type approach is used with an optical signal conveyed in an optical fiber, such as a multimode fiber (MMF) or a multimode waveguide. Modal dispersion in the optical signal is mitigated.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: February 5, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Joseph M. Kahn, Mark A. Horowitz, Olav Solgaard, Shanhui Fan
  • Publication number: 20080007833
    Abstract: This invention relates to a configurable diffractive optical element comprising an array of diffractive sub-elements having a reflective surface, wherein each sub-element has a controllable position with a chosen range, and in which a number of sub-elements are provided with a reflective grating with a number of chosen spectral characteristics.
    Type: Application
    Filed: September 19, 2007
    Publication date: January 10, 2008
    Applicants: SINVENT AS, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hakon SAGBERG, Ib-Rune JOHANSEN, Odd LOVHAUGEN, Olav SOLGAARD, Matthieu LACOLLE
  • Patent number: 7302833
    Abstract: A method for measuring high frequency force of interaction between a tip of a cantilever and a sample includes providing a cantilever having a cantilever arm and a probe tip formed on a free end of the cantilever arm where the cantilever arm has a first shape and an axis of torsion associated with the first shape and the probe tip is positioned in an offset displacement from the axis of torsion, vibrating the cantilever at or near the fundamental flexural resonance frequency with a predetermined oscillation amplitude, bringing the cantilever to the vicinity of the sample, tapping the surface of the sample repeatedly using the probe tip, and detecting changes in the amplitude or the phase of a high frequency vibration harmonic of the cantilever as the cantilever is deflected in response to features on the surface of the sample.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: December 4, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ozgur Sahin, Calvin F. Quate, Olav Solgaard