Patents by Inventor Olav Solgaard

Olav Solgaard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050018541
    Abstract: The invention relates an optical displacement sensor element comprising two essentially flat surfaces (1,2) being separated by a cavity defined by a spacer (5) and the surfaces (1,2), the distance between the surfaces being variable, wherein a first of said surfaces (1) is positioned on an at least partially transparent carrier (3) and being provided with a reflective pattern, the pattern constituting a pattern being shaped as a diffractive lens, and said second surface (2) being a reflective surface.
    Type: Application
    Filed: November 13, 2002
    Publication date: January 27, 2005
    Inventors: Ib-Rune Johansen, Olav Solgaard, Odd Lovhaugen, Hakon Sagberg, Henrik Rogne, Dag Wang
  • Patent number: 6834136
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micromirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: December 21, 2004
    Assignee: The Regents of the University of California
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Patent number: 6819823
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micromirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: November 16, 2004
    Assignee: The Regents of the University of California
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Patent number: 6804429
    Abstract: A reconfigurable optical device capable of filtering, multiplexing, and spectrometry, among other functions. The device has an array of micromirrors disposed under a floating reflector that is partially reflecting. The floating reflector is spaced apart from the micromirrors a certain distance. The micromirrors are each capable of independent vertical motion, and, optionally, tilting motion. In use, light is projected at an oblique angle into the space between the micromirrors. Each reflection from the floating reflector produces an emergent beam from the floating reflector. The emergent light beams are combined with a lens. As a direct result of this structure, different wavelengths are focused to different points in the focal plane of the lens. The focal point positions of the different wavelengths can be moved by manipulating the micromirrors. This allows for reconfigurable filtering, spectrometry, and multiplexing, among other applications.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: October 12, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kyoungsik Yu, Olav Solgaard
  • Publication number: 20040080726
    Abstract: We introduce a mechanically tunable photonic crystal structure consisting of coupled photonic crystal slabs. Using both analytic theory, and first-principles finite-difference time-domain simulations, we demonstrate that the transmission and reflection coefficients for light normally incident upon such structures can be highly sensitive to nano-scale variations in the spacing between the slabs. Moreover, by specifically configuring the photonic crystal structures, the high sensitivity can be preserved in spite of significant fabrication-related disorders. We expect such a structure to play important roles in micro-mechanically tunable optical sensors and filters.
    Type: Application
    Filed: October 8, 2003
    Publication date: April 29, 2004
    Inventors: Wonjoo Suh, M. F. Yanik, Olav Solgaard, Shanhui Fan
  • Patent number: 6713367
    Abstract: A method of fabricating a self-aligned vertical combdrive is described. The method includes the steps of etching in a semiconductor wafer a first comb with a coarse set of teeth. A second semiconductor wafer is bonded to the first set of teeth. A set of accurately positioned teeth is etched in the second wafer with teeth overlapping the teeth in the first comb. The lower teeth are etched using the overlapping teeth as a mask to assure proper alignment. One variation in this fabrication method whereby the first coarse comb teeth are etched on semiconductor-on-insulator instead, allows creation of double-sided comb actuators with increased torsional deflection range. Another variation to this fabrication method that keeps the electrically isolated upper masking teeth allows creation of dual-mode vertical comb actuators after an initial assembly step.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: March 30, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Olav Solgaard, Uma Krishnamoorthy
  • Patent number: 6711320
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 23, 2004
    Assignee: The Regents of the University of California
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Publication number: 20030231692
    Abstract: A tunable laser comprises multiple reflectors defining a resonant cavity, and an optical gain medium positioned within the resonant cavity. One of the reflectors is a programmable micromirror array that acts as a tunable blazed diffraction grating providing continuous tuning of a single resonant mode over a wavelength gain region of the gain medium. The continuous tuning is provided by altering the micromirror array to shift, in synchrony, a resonant mode wavelength of the resonant cavity and a reflection filtering peak of the array. The array comprises a plurality of micromirror elements that can be controlled to independently move in a direction perpendicular to the plane of the array. In one embodiment, each element has a V-shaped movable mirror. In another embodiment, each element has a flat or slightly-tilted horizontal mirror and a vertical or nearly-vertical mirror orthogonal to the horizontal mirror producing a corner-cube-like reflection.
    Type: Application
    Filed: March 6, 2003
    Publication date: December 18, 2003
    Inventors: Ruslan Belikov, Olav Solgaard
  • Patent number: 6643053
    Abstract: One embodiment of the present invention provides a spatial light phase modulator, which can perform piecewise linear phase modulation of a light beam. This spatial light phase modulator includes an array of movable micromirrors and an array of actuators. Each actuator of the array of actuators is movably coupled to one micromirror of the array of movable micromirrors and can move the micromirror both vertically and rotationally. Additionally, the present invention provides an optical function generator that is a femtosecond pulse shaper. This optical function generator includes a diffraction grating that disperses an input pulse into a dispersed spectrum, a lens assembly to focus the dispersed spectrum onto a micromirror array, and the micromirror array to provide spatial filtering to the dispersed spectrum to provide the filtered spectrum.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: November 4, 2003
    Assignee: The Regents of the University of California
    Inventors: Kebin Li, Jonathan P. Heritage, Kimberly T. Cornett, Olav Solgaard, Uma Krishnamoorthy
  • Publication number: 20030156315
    Abstract: One embodiment of the present invention provides a spatial light phase modulator, which can perform piecewise linear phase modulation of a light beam. This spatial light phase modulator includes an array of movable micromirrors and an array of actuators. Each actuator of the array of actuators is movably coupled to one micromirror of the array of movable micromirrors and can move the micromirror both vertically and rotationally. Additionally, the present invention provides an optical function generator that is a femtosecond pulse shaper. This optical function generator includes a diffraction grating that disperses an input pulse into a dispersed spectrum, a lens assembly to focus the dispersed spectrum onto a micromirror array, and the micromirror array to provide spatial filtering to the dispersed spectrum to provide the filtered spectrum.
    Type: Application
    Filed: February 20, 2002
    Publication date: August 21, 2003
    Inventors: Kebin Li, Jonathan P. Heritage, Kimberly T. Cornett, Olav Solgaard, Uma Krishnamoorthy
  • Publication number: 20030137660
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Application
    Filed: November 12, 2002
    Publication date: July 24, 2003
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Publication number: 20030133095
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Application
    Filed: November 12, 2002
    Publication date: July 17, 2003
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Publication number: 20030058520
    Abstract: A reconfigurable optical device capable of filtering, multiplexing, and spectrometry, among other functions. The device has an array of micromirrors disposed under a floating reflector that is partially reflecting. The floating reflector is spaced apart from the micromirrors a certain distance. The micromirrors are each capable of independent vertical motion, and, optionally, tilting motion. In use, light is projected at an oblique angle into the space between the micromirrors. Each reflection from the floating reflector produces an emergent beam from the floating reflector. The emergent light beams are combined with a lens. As a direct result of this structure, different wavelengths are focused to different points in the focal plane of the lens. The focal point positions of the different wavelengths can be moved by manipulating the micromirrors. This allows for reconfigurable filtering, spectrometry, and multiplexing, among other applications.
    Type: Application
    Filed: February 8, 2002
    Publication date: March 27, 2003
    Inventors: Kyoungsik Yu, Olav Solgaard
  • Publication number: 20020061160
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 23, 2002
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Patent number: 6389190
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: May 14, 2002
    Assignee: The Regents of the University of California
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Patent number: 6374008
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: April 16, 2002
    Assignee: The Regents of the University of California
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Publication number: 20020012489
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Application
    Filed: March 20, 2001
    Publication date: January 31, 2002
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Patent number: 6327398
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: December 4, 2001
    Assignee: The Regents of the University of California
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Publication number: 20010022876
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micromirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Application
    Filed: May 4, 2001
    Publication date: September 20, 2001
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai
  • Patent number: 6289145
    Abstract: A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: September 11, 2001
    Assignee: The Regents of the University of California
    Inventors: Olav Solgaard, Jonathan P. Heritage, Amal R. Bhattarai