Patents by Inventor Oleg Golonzka

Oleg Golonzka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180248115
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include one or more electrode interface material layers disposed between a an electrode metal, such as TiN, and a seed layer of an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. The electrode interface material layers may include either or both of a Ta material layer or CoFeB material layer. In some Ta embodiments, a Ru material layer may be deposited on a TiN electrode surface, followed by the Ta material layer. In some CoFeB embodiments, a CoFeB material layer may be deposited directly on a TiN electrode surface, or a Ta material layer may be deposited on the TiN electrode surface, followed by the CoFeB material layer.
    Type: Application
    Filed: September 25, 2015
    Publication date: August 30, 2018
    Applicant: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Publication number: 20180240970
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include a multi-layered filter stack disposed between a fixed magnetic layer and an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. In some embodiments, non-magnetic layers of the filter stack include at least one of Ta, Mo, Nb, W, or Hf. These transition metals may be in pure form or alloyed with other constituents.
    Type: Application
    Filed: September 25, 2015
    Publication date: August 23, 2018
    Applicant: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Publication number: 20180182952
    Abstract: An embodiment includes an apparatus comprising: a magnetic tunnel junction (MTJ), between first and second electrodes, comprising a dielectric layer between fixed and free layers; a dielectric film directly contacting sidewalls of the first electrode; and a metallic layer coupled to the side-walls via the dielectric film; wherein (a) a vertical axis intersects the first and second electrodes and the MTJ but not the metallic layer, (b) a first horizontal axis intersects the metallic layer, the dielectric film, and the first electrode; and (c) a second horizontal axis, between the first horizontal axis and the MTJ, intersects the dielectric film and the first electrode but not the capping layer. Other embodiments are described herein.
    Type: Application
    Filed: June 19, 2015
    Publication date: June 28, 2018
    Inventors: Daniel R. Lamborn, Oleg Golonzka, Christopher J. Wiegand, Philip E. Heil, MD Tofizur Rahman, Rebecca J. Castellano, Tarun Bansal
  • Publication number: 20180097003
    Abstract: A wrap-around source/drain trench contact structure is described. A plurality of semiconductor fins extend from a semiconductor substrate. A channel region is disposed in each fin between a pair of source/drain regions. An epitaxial semiconductor layer covers the top surface and sidewall surfaces of each fin over the source/drain regions, defining high aspect ratio gaps between adjacent fins. A pair of source/drain trench contacts are electrically coupled to the epitaxial semiconductor layers. The source/drain trench contacts comprise a conformal metal layer and a fill metal. The conformal metal layer conforms to the epitaxial semiconductor layers. The fill metal comprises a plug and a barrier layer, wherein the plug fills a contact trench formed above the fins and the conformal metal layer, and the barrier layer lines the plug to prevent interdiffusion of the conformal metal layer material and plug material.
    Type: Application
    Filed: November 30, 2017
    Publication date: April 5, 2018
    Inventors: Joseph Steigerwald, Tahir Ghani, Oleg Golonzka
  • Patent number: 9922930
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: March 20, 2018
    Assignee: INTEL CORPORATION
    Inventors: Bernhard Sell, Oleg Golonzka
  • Patent number: 9876016
    Abstract: A wrap-around source/drain trench contact structure is described. A plurality of semiconductor fins extend from a semiconductor substrate. A channel region is disposed in each fin between a pair of source/drain regions. An epitaxial semiconductor layer covers the top surface and sidewall surfaces of each fin over the source/drain regions, defining high aspect ratio gaps between adjacent fins. A pair of source/drain trench contacts are electrically coupled to the epitaxial semiconductor layers. The source/drain trench contacts comprise a conformal metal layer and a fill metal. The conformal metal layer conforms to the epitaxial semiconductor layers. The fill metal comprises a plug and a barrier layer, wherein the plug fills a contact trench formed above the fins and the conformal metal layer, and the barrier layer lines the plug to prevent interdiffusion of the conformal metal layer material and plug material.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: January 23, 2018
    Assignee: Intel Corporation
    Inventors: Joseph Steigerwald, Tahir Ghani, Oleg Golonzka
  • Publication number: 20170294350
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 12, 2017
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Patent number: 9716037
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 25, 2017
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Publication number: 20170207185
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Application
    Filed: March 31, 2017
    Publication date: July 20, 2017
    Applicant: INTEL CORPORATION
    Inventors: CHARLES H. WALLACE, HOSSAM A. ABDALLAH, ELLIOT N. TAN, SWAMINATHAN SIVAKUMAR, OLEG GOLONZKA, ROBERT M. BIGWOOD
  • Publication number: 20170141039
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Applicant: INTEL CORPORATION
    Inventors: BERNHARD SELL, OLEG GOLONZKA
  • Publication number: 20170139318
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Applicant: INTEL CORPORATION
    Inventors: CHARLES H. WALLACE, HOSSAM M. ABDALLAH, ELLIOT N. TAN, SWAMINATHAN SIVAKUMAR, OLEG GOLONZKA, ROBERT M. BIGWOOD
  • Patent number: 9559060
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: January 31, 2017
    Assignee: Intel Corporation
    Inventors: Bernhard Sell, Oleg Golonzka
  • Patent number: 9558947
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may he arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: January 31, 2017
    Assignee: INTEL CORPORATION
    Inventors: Charles H. Wallace, Hossam M. Abdallah, Elliot N. Tan, Swaminathan Sivakumar, Oleg Golonzka, Robert M. Bigwood
  • Publication number: 20170005136
    Abstract: Embodiments of the present disclosure describe techniques and configurations associated with modulation of magnetic properties through implantation. In one embodiment, a method includes providing a substrate having an integrated circuit (IC) structure disposed on the substrate, the IC structure including a magnetizable material, implanting at least a portion of the magnetizable material with a dopant and magnetizing the magnetizable material, wherein said magnetizing is inhibited in the implanted portion of the magnetizable material. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 28, 2014
    Publication date: January 5, 2017
    Inventors: Christopher J. WIEGAND, Md Tofizur RAHMAN, Oleg GOLONZKA, Anant H. JAHAGIRDAR, Mengcheng LU
  • Publication number: 20160336271
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Bernhard Sell, Oleg Golonzka
  • Patent number: 9437546
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: September 6, 2016
    Assignee: Intel Corporation
    Inventors: Bernhard Sell, Oleg Golonzka
  • Publication number: 20160126191
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Application
    Filed: January 12, 2016
    Publication date: May 5, 2016
    Inventors: Bernhard Sell, Oleg Golonzka
  • Patent number: 9318694
    Abstract: Methods of forming a memory device structure are described. Those methods may include forming a non-conductive spacer material on a top electrode of a magnetic tunnel junction structure, and then forming a highly selective material on the non-conductive spacer material of the magnetic tunnel junction prior to etching a bottom electrode of the magnetic tunnel junction.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: April 19, 2016
    Assignee: Intel Corporation
    Inventors: Daniel Lamborn, Oleg Golonzka, Christopher Wiegand
  • Patent number: 9293579
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an IID disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 22, 2016
    Assignee: Intel Corporation
    Inventors: Bernhard Sell, Oleg Golonzka
  • Patent number: 9252267
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an IID disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: February 2, 2016
    Assignee: Intel Corporation
    Inventors: Bernhard Sell, Oleg Golonzka