Patents by Inventor Oleg Golonzka

Oleg Golonzka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200144496
    Abstract: Approaches for fabricating RRAM stacks with reduced forming voltage, and the resulting structures and devices, are described. In an example, a resistive random access memory (RRAM) device includes a conductive interconnect in an inter-layer dielectric (ILD) layer above a substrate. An RRAM element is on the conductive interconnect, the RRAM element including a first electrode layer on the uppermost surface of the conductive interconnect. A resistance switching layer is on the first electrode layer, the resistance switching layer including a first metal oxide material layer on the first electrode layer, and a second metal oxide material layer on the first metal oxide material layer, the second metal oxide material layer including a metal species not included in the first metal oxide material layer. An oxygen exchange layer is on the second metal oxide material layer of the resistance switching layer. A second electrode layer is on the oxygen exchange layer.
    Type: Application
    Filed: September 18, 2017
    Publication date: May 7, 2020
    Inventors: Timothy E. GLASSMAN, Dragos SEGHETE, Nathan STRUTT, Namrata S. ASURI, Oleg GOLONZKA
  • Patent number: 10636960
    Abstract: MTJ material stacks with a laterally strained free magnetic layer, STTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular pMTJ material stacks included free magnetic layers that are compressively strained laterally by a surrounding material, which increases coercive field strength for a more stable device. In some embodiments, a pMTJ material stack is encased in a compressive-stressed material. In some further embodiments, a pMTJ material stack is encased first in a dielectric shell, permitting a conductive material to be deposited over the shell as the compressive-stressed, strain-inducing material layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 28, 2020
    Assignee: Intel Corporation
    Inventors: Prashanth P. Madras, MD Tofizur Rahman, Christopher J. Wiegand, Brian Maertz, Oleg Golonzka, Kevin P. O'Brien, Mark L. Doczy, Brian S. Doyle, Tahir Ghani, Kaan Oguz
  • Publication number: 20200106013
    Abstract: A memory device structure includes a first electrode, a second electrode, a switching layer between the first electrode and the second electrode, where the switching layer is to transition between first and second resistive states at a voltage threshold. The memory device further includes an oxygen exchange layer between the switching layer and the second electrode, where the oxygen exchange layer includes a metal and a sidewall oxide in contact with a sidewall of the oxygen exchange layer. The sidewall oxide includes the metal of the oxygen exchange layer and oxygen, and has a lateral thickness that exceed a thickness of the switching layer.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Applicant: Intel Corporation
    Inventors: Nathan Strutt, Albert Chen, Oleg Golonzka
  • Patent number: 10607884
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: March 31, 2020
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Publication number: 20200091101
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Applicant: INTEL CORPORATION
    Inventors: CHARLES H. WALLACE, HOSSAM A. ABDALLAH, ELLIOT N. TAN, SWAMINATHAN SIVAKUMAR, OLEG GOLONZKA, ROBERT M. BIGWOOD
  • Patent number: 10580970
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular MTJ material stacks with free magnetic layers are magnetically coupled through a metal material layer for improved stability and low damping. In some advantageous embodiments, layers of a free magnetic material stack are magnetically coupled through a coupling layer of a metal comprising at least molybdenum (Mo). The Mo may be in pure form or alloyed with other constituents.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 3, 2020
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Patent number: 10559744
    Abstract: An apparatus including an array of memory cells arranged in a grid defined by word lines and bit lines in a generally orthogonal orientation relative to one another, a memory cell including a resistive memory component and an access transistor, wherein the access transistor includes a diffusion region disposed at an acute angle relative to an associated word line. A method including etching a substrate to form a plurality of fins each including a body having a length dimension including a plurality of first junction regions and a plurality of second junction regions that are generally parallel to one another and offset by angled channel regions displacing in the length dimension an end of a first junction region from the beginning of a second junction region; removing the spacer material; and introducing a gate electrode on the channel region of each of the plurality of fins.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 11, 2020
    Assignee: Intel Corporation
    Inventors: Brian Maertz, Christopher J. Wiegand, Daniel G. Oeullette, Md Tofizur Rahman, Oleg Golonzka, Justin S. Brockman, Tahir Ghani, Brian S. Doyle, Kevin P. O'Brien, Mark L. Doczy, Kaan Oguz
  • Publication number: 20200006634
    Abstract: A memory device method of fabrication that includes a first electrode having a first conductive layer including titanium and nitrogen and a second conductive layer on the first conductive layer that includes tantalum and nitrogen. The memory device further includes a magnetic tunnel junction (MTJ) on the first electrode. In some embodiments, at least a portion of the first conductive layer proximal to an interface with the second conductive layer includes oxygen.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Justin Brockman, Conor Puls, Stephen Wu, Christopher Wiegand, Tofizur Rahman, Daniel Ouellette, Angeline Smith, Andrew Smith, Pedro Quintero, Juan Alzate-Vinasco, Oleg Golonzka
  • Publication number: 20200006635
    Abstract: A memory device includes a perpendicular magnetic tunnel junction (pMTJ) stack, between a bottom electrode and a top electrode. In an embodiment, the pMTJ includes a fixed magnet, a tunnel barrier above the fixed magnet and a free magnet structure on the tunnel barrier. The free magnet structure includes a first free magnet on the tunnel barrier and a second free magnet above the first free magnet, wherein at least a portion of the free magnet proximal to an interface with the free magnet includes a transition metal. The free magnet structure having a transition metal between the first and the second free magnets advantageously improves the switching efficiency of the MTJ, while maintaining a thermal stability of at least 50 kT.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Tofizur Rahman, Christopher J. Wiegand, Justin S. Brockman, Daniel G. Ouellette, Angeline K. Smith, Andrew Smith, Pedro A. Quintero, Juan G. Alzate-Vinasco, Oleg Golonzka
  • Publication number: 20200006632
    Abstract: A memory device includes a bottom electrode, a conductive layer such as an alloy including ruthenium and tungsten above the bottom electrode and a perpendicular magnetic tunnel junction (pMTJ) on the conductive layer. In an embodiment, the pMTJ includes a fixed magnet, a tunnel barrier above the fixed magnet and a free magnet on the tunnel barrier. The memory device further includes a synthetic antiferromagnetic (SAF) structure that is ferromagnetically coupled with the fixed magnet to pin a magnetization of the fixed magnet. The conductive layer has a crystal texture which promotes high quality FCC <111> crystal texture in the SAF structure and improves perpendicular magnetic anisotropy of the fixed magnet.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Daniel Ouellette, Justin Brockman, Tofizur Rahman, Angeline Smith, Andrew Smith, Christopher Wiegand, Oleg Golonzka
  • Publication number: 20190386209
    Abstract: Material stacks for perpendicular spin transfer torque memory (pSTTM) devices, pSTTM devices and computing platforms employing such material stacks, and methods for forming them are discussed. The material stacks include a cladding layer of predominantly tungsten on a protective layer, which is in turn on an oxide capping layer over a magnetic junction stack. The cladding layer reduces oxygen dissociation from the oxide capping layer for improved thermal stability and retention.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Applicant: Intel Corporation
    Inventors: Angeline Smith, Justin Brockman, Tofizur Rahman, Daniel Ouellette, Andrew Smith, Juan Alzate Vinasco, James ODonnell, Christopher Wiegand, Oleg Golonzka
  • Publication number: 20190378972
    Abstract: A material layer stack for a pSTTM device includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free layer disposed on the tunnel barrier. The free layer further includes a stack of bilayers where an uppermost bilayer is capped by a magnetic layer including iron and where each of the bilayers in the free layer includes a non-magnetic layer such as Tungsten, Molybdenum disposed on the magnetic layer. In an embodiment, the non-magnetic layers have a combined thickness that is less than 15% of a combined thickness of the magnetic layers in the stack of bi-layers. A stack of bilayers including non-magnetic layers in the free layer can reduce the saturation magnetization of the material layer stack for the pSTTM device and subsequently increase the perpendicular magnetic anisotropy.
    Type: Application
    Filed: December 30, 2016
    Publication date: December 12, 2019
    Inventors: MD Tofizur RAHMAN, Christopher J. WIEGAND, Kaan OGUZ, Daniel G. OUELLETTE, Brian MAERTZ, Kevin P. O'BRIEN, Mark L. DOCZY, Brian S. DOYLE, Oleg GOLONZKA, Tahir GHANI
  • Patent number: 10490519
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: November 26, 2019
    Assignee: INTEL CORPORATION
    Inventors: Charles H. Wallace, Hossam A. Abdallah, Elliot N. Tan, Swaminathan Sivakumar, Oleg Golonzka, Robert M. Bigwood
  • Publication number: 20190334079
    Abstract: A material layer stack for a pSTTM memory device includes a magnetic tunnel junction (MTJ) stack, a oxide layer, a protective layer and a capping layer. The MTJ includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free magnetic layer disposed on the tunnel barrier. The oxide layer, which enables an increase in perpendicularity of the pSTTM material layer stack, is disposed on the free magnetic layer. The protective layer is disposed on the oxide layer, and acts as a protective barrier to the oxide from physical sputter damage during subsequent layer deposition. A conductive capping layer with a low oxygen affinity is disposed on the protective layer to reduce iron-oxygen de-hybridization at the interface between the free magnetic layer and the oxide layer. The inherent non-oxygen scavenging nature of the conductive capping layer enhances stability and reduces retention loss in pSTTM devices.
    Type: Application
    Filed: December 30, 2016
    Publication date: October 31, 2019
    Inventors: MD Tofizur RAHMAN, Christopher J. WIEGAND, Kaan OGUZ, Justin S. BROCKMAN, Daniel G. OUELLETTE, Brian MAERTZ, Kevin P. O'BRIEN, Mark L. DOCZY, Brian S. DOYLE, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20190288190
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include a multi-layered filter stack disposed between a fixed magnetic layer and an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. In some embodiments, non-magnetic layers of the filter stack include at least one of Ta, Mo, Nb, W, or Hf. These transition metals may be in pure form or alloyed with other constituents.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Applicant: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Patent number: 10418415
    Abstract: Approaches for an interconnect cladding process for integrating magnetic random access memory (MRAM) devices, and the resulting structures, are described. In an example, a memory structure includes an interconnect disposed in a trench of a dielectric layer above a substrate, the interconnect including a diffusion barrier layer disposed at a bottom of and along sidewalls of the trench to an uppermost surface of the dielectric layer, a conductive fill layer disposed on the diffusion barrier layer and recessed below the uppermost surface of the dielectric layer and an uppermost surface of the diffusion barrier layer, and a conductive capping layer disposed on the conductive fill layer and between sidewall portions of the diffusion barrier layer. A memory element is disposed on the conductive capping layer of the interconnect.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: September 17, 2019
    Assignee: Intel Corporation
    Inventors: Christopher J. Wiegand, Oleg Golonzka, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Kevin P. O'Brien, Kaan Oguz, Tahir Ghani, Satyarth Suri
  • Publication number: 20190280188
    Abstract: An apparatus comprises a magnetic tunnel junction (MTJ) including a free magnetic layer, a fixed magnetic layer, and a tunnel barrier between the free and fixed layers, the tunnel barrier directly contacting a first side of the free layer, a capping layer contacting the second side of the free magnetic layer and boron absorption layer positioned a fixed distance above the capping layer.
    Type: Application
    Filed: December 28, 2016
    Publication date: September 12, 2019
    Inventors: Justin BROCKMAN, Christopher WIEGAND, MD Tofizur RAHMAN, Daniel OUELETTE, Angeline SMITH, Juan ALZATE VINASCO, Charles KUO, Mark DOCZY, Kaan OGUZ, Kevin O'BRIEN, Brian DOYLE, Oleg GOLONZKA, Tahir GHANI
  • Patent number: 10411068
    Abstract: Disclosed herein are electrical contacts for magnetoresistive random access memory (MRAM) devices and related memory structures, devices, and methods. For example, and electrical contact for an MRAM device may include: a tantalum region; a barrier region formed of a first material; and a passivation region formed of a second material and disposed between the tantalum region and the barrier region, wherein the second material includes tantalum nitride and is different from the first material.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Christopher J. Wiegand, Oleg Golonzka, Kaan Oguz, Kevin P. O'Brien, Tofizur Rahman, Brian S. Doyle, Tahir Ghani, Mark L. Doczy
  • Patent number: 10409152
    Abstract: Techniques are disclosed for realizing a two-dimensional target lithography feature/pattern by decomposing (splitting) it into multiple unidirectional target features that, when aggregated, substantially (e.g., fully) represent the original target feature without leaving an unrepresented remainder (e.g., a whole-number quantity of unidirectional target features). The unidirectional target features may be arbitrarily grouped such that, within a grouping, all unidirectional target features share a common target width value. Where multiple such groupings are provided, individual groupings may or may not have the same common target width value. In some cases, a series of reticles is provided, each reticle having a mask pattern correlating to a grouping of unidirectional target features. Exposure of a photoresist material via the aggregated series of reticles substantially (e.g., fully) produces the original target feature/pattern.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: September 10, 2019
    Assignee: INTEL CORPORATION
    Inventors: Charles H. Wallace, Hossam A. Abdallah, Elliot N. Tan, Swaminathan Sivakumar, Oleg Golonzka, Robert M. Bigwood
  • Publication number: 20190267286
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI