Patents by Inventor Oleg Golonzka

Oleg Golonzka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190267286
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20190237404
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Applicant: INTEL CORPORATION
    Inventors: BERNHARD SELL, OLEG GOLONZKA
  • Patent number: 10340445
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include one or more electrode interface material layers disposed between a an electrode metal, such as TiN, and a seed layer of an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. The electrode interface material layers may include either or both of a Ta material layer or CoFeB material layer. In some Ta embodiments, a Ru material layer may be deposited on a TiN electrode surface, followed by the Ta material layer. In some CoFeB embodiments, a CoFeB material layer may be deposited directly on a TiN electrode surface, or a Ta material layer may be deposited on the TiN electrode surface, followed by the CoFeB material layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Patent number: 10340185
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Oleg Golonzka, Swaminathan Sivakumar, Charles H. Wallace, Tahir Ghani
  • Patent number: 10326075
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include a multi-layered filter stack disposed between a fixed magnetic layer and an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. In some embodiments, non-magnetic layers of the filter stack include at least one of Ta, Mo, Nb, W, or Hf. These transition metals may be in pure form or alloyed with other constituents.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 18, 2019
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Patent number: 10297549
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 21, 2019
    Assignee: INTEL CORPORATION
    Inventors: Bernhard Sell, Oleg Golonzka
  • Publication number: 20190140166
    Abstract: Material layer stack structures to provide a magnetic tunnel junction (MTJ) having improved perpendicular magnetic anisotropy (PMA) characteristics. In an embodiment, a free magnetic layer of the material layer stack is disposed between a tunnel barrier layer and a cap layer of magnesium oxide (Mg). The free magnetic layer includes a Cobalt-Iron-Boron (CoFeB) body substantially comprised of a combination of Cobalt atoms, Iron atoms and Boron atoms. A first Boron mass fraction of the CoFeB body is equal to or more than 25% (e.g., equal to or more than 27%) in a first region which adjoins an interface of the free magnetic layer with the tunnel barrier layer. In another embodiment, the first Boron mass fraction is more than a second Boron mass fraction in a second region of the CoFeB body which adjoins an interface of the free magnetic layer with the cap layer.
    Type: Application
    Filed: July 1, 2016
    Publication date: May 9, 2019
    Inventors: MD Tofizur RAHMAN, Christopher J. WIEGAND, Brian MAERTZ, Daniel G. OUELLETTE, Kevin P. O'BRIEN, Kaan OGUZ, Brian S. DOYLE, Mark L. DOCZY, Daniel B. BERGSTROM, Justin S. BROCKMAN, Oleg GOLONZKA, Tahir GHANI
  • Patent number: 10256395
    Abstract: An embodiment includes an apparatus comprising: a magnetic tunnel junction (MTJ), between first and second electrodes, comprising a dielectric layer between fixed and free layers; a dielectric film directly contacting sidewalls of the first electrode; and a metallic layer coupled to the sidewalls via the dielectric film; wherein (a) a vertical axis intersects the first and second electrodes and the MTJ but not the metallic layer, (b) a first horizontal axis intersects the metallic layer, the dielectric film, and the first electrode; and (c) a second horizontal axis, between the first horizontal axis and the MTJ, intersects the dielectric film and the first electrode but not the capping layer. Other embodiments are described herein.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 9, 2019
    Assignee: Intel Corporation
    Inventors: Daniel R. Lamborn, Oleg Golonzka, Christopher J. Wiegand, Philip E. Heil, M D Tofizur Rahman, Rebecca J. Castellano, Tarun Bansal
  • Publication number: 20190081233
    Abstract: Techniques are disclosed for forming a logic device including integrated spin-transfer torque magnetoresistive random-access memory (STT-MRAM). In accordance with some embodiments, one or more magnetic tunnel junction (MTJ) devices may be formed within a given back-end-of-line (BEOL) interconnect layer of a host logic device. A given MTJ device may be formed, in accordance with some embodiments, over an electrically conductive layer configured to serve as a pedestal layer for the MTJ's constituent magnetic and insulator layers. In accordance with some embodiments, one or more conformal spacer layers may be formed over sidewalls of a given MTJ device and attendant pedestal layer, providing protection from oxidation and corrosion. A given MTJ device may be electrically coupled with an underlying interconnect or other electrically conductive feature, for example, by another intervening electrically conductive layer configured to serve as a thin via, in accordance with some embodiments.
    Type: Application
    Filed: April 1, 2016
    Publication date: March 14, 2019
    Applicant: INTEL CORPORATION
    Inventors: KEVIN J. LEE, OLEG GOLONZKA, TAHIR GHANI, RUTH A. BRAIN, YIH WANG
  • Publication number: 20190049514
    Abstract: Techniques are disclosed for carrying out ferromagnetic resonance (FMR) testing on whole wafers populated with one or more buried magnetic layers. The techniques can be used to verify or troubleshoot processes for forming the buried magnetic layers, without requiring the wafer to be broken. The techniques can also be used to distinguish one magnetic layer from others in the same stack, based on a unique frequency response of that layer. One example methodology includes moving a wafer proximate to a waveguide (within 500 microns, but without shorting), energizing a DC magnetic field near the target measurement point, applying an RF input signal through the waveguide, collecting resonance spectra of the frequency response of the waveguide, and decomposing the resonance spectra into magnetic properties of the target layer. One or both of the DC magnetic field and RF input signal can be swept to generate a robust set of resonance spectra.
    Type: Application
    Filed: April 1, 2016
    Publication date: February 14, 2019
    Applicant: INTEL CORPORATION
    Inventors: KEVIN P. O'BRIEN, KAAN OGUZ, CHRISTOPHER J. WIEGAND, MARK L. DOCZY, BRIAN S. DOYLE, MD TOFIZUR RAHMAN, OLEG GOLONZKA, TAHIR GHANI
  • Publication number: 20190036010
    Abstract: An apparatus including an array of memory cells arranged in a grid defined by word lines and bit lines in a generally orthogonal orientation relative to one another, a memory cell including a resistive memory component and an access transistor, wherein the access transistor includes a diffusion region disposed at an acute angle relative to an associated word line. A method including etching a substrate to form a plurality of fins each including a body having a length dimension including a plurality of first junction regions and a plurality of second junction regions that are generally parallel to one another and offset by angled channel regions displacing in the length dimension an end of a first junction region from the beginning of a second junction region; removing the spacer material; and introducing a gate electrode on the channel region of each of the plurality of fins.
    Type: Application
    Filed: April 1, 2016
    Publication date: January 31, 2019
    Inventors: Brian MAERTZ, Christopher J. WIEGAND, Daniel G. OEULLETTE, MD Tofizur RAHMAN, Oleg GOLONZKA, Justin S. BROCKMAN, Tahir GHANI, Brian S. DOYLE, Kevin P. O'BRIEN, Mark L. DOCZY, Kaan OGUZ
  • Publication number: 20190027536
    Abstract: Disclosed herein are electrical contacts for magnetoresistive random access memory (MRAM) devices and related memory structures, devices, and methods. For example, and electrical contact for an MRAM device may include: a tantalum region; a barrier region formed of a first material; and a passivation region formed of a second material and disposed between the tantalum region and the barrier region, wherein the second material includes tantalum nitride and is different from the first material.
    Type: Application
    Filed: November 23, 2015
    Publication date: January 24, 2019
    Applicant: Intel Corporation
    Inventors: Christopher J. Wiegand, Oleg Golonzka, Kaan Oguz, Kevin P. O'Brien, Tofizur Rahman, Brian S. Doyle, Tahir Ghani, Mark L. Doczy
  • Publication number: 20190027537
    Abstract: Approaches for an interconnect cladding process for integrating magnetic random access memory (MRAM) devices, and the resulting structures, are described. In an example, a memory structure includes an interconnect disposed in a trench of dielectric layer above a substrates, the interconnect including a diffusion barrier layer disposed at a bottom of and along sidewalls of the trench to an uppermost surface of the dielectric layer, a conductive fill layer disposed on the diffusion barrier layer and recessed below the uppermost surface of the dielectric layer and an uppermost surface of the diffusion barrier layer, and a conductive capping layer disposed on the conductive fill layer and between sidewall portions of the diffusion barrier layer. A memory element is disposed on the conductive capping layer of the interconnect.
    Type: Application
    Filed: March 28, 2016
    Publication date: January 24, 2019
    Inventors: Christopher J. WIEGAND, Oleg GOLONZKA, MD Tofizur RAHMAN, Brian S. DOYLE, Mark L. DOCZY, Kevin P. O'BRIEN, Kaan OGUZ, Tahir GHANI, Satyarth SURI
  • Publication number: 20190027679
    Abstract: Approaches for strain engineering of perpendicular magnetic tunnel junctions (pMTJs), and the resulting structures, are described. In an example, a memory structure includes a perpendicular magnetic tunnel junction (pMTJ) element disposed above a substrate. A lateral strain-inducing material layer is disposed on the pMTJ element. An inter-layer dielectric (ILD) layer is disposed laterally adjacent to both the pMTJ element and the lateral strain-inducing material layer. The ILD layer has an uppermost surface co-planar or substantially co-planar with an uppermost surface of the lateral strain-inducing material layer.
    Type: Application
    Filed: March 30, 2016
    Publication date: January 24, 2019
    Applicant: Intel Corporation
    Inventors: Daniel G. OUELLETTE, Christopher J. WIEGAND, MD Tofizur RAHMAN, Brian MAERTZ, Oleg GOLONZKA, Justin S. BROCKMAN, Kevin P. O'BRIEN, Brian S. DOYLE, Kaan OGUZ, Tahir GHANI, Mark L. DOCZY
  • Publication number: 20190013353
    Abstract: Approaches for integrating spin torque transfer magnetic random access memory (STT-MRAM) memory arrays into a logic processor, and the resulting structures, are described. In an example, a logic processor including a logic region including metal line/via pairings disposed in a dielectric layer disposed above a substrate. The logic processor also includes a spin torque transfer magnetoresistive random access memory (STT-MRAM) array including a plurality of magnetic tunnel junctions (MTJs). The MTJs are disposed in the dielectric layer.
    Type: Application
    Filed: March 7, 2016
    Publication date: January 10, 2019
    Inventors: Kevin J. LEE, Oleg GOLONZKA, Tahir GHANI, Ruth A. BRAIN, Yih WANG
  • Publication number: 20180315710
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Application
    Filed: March 19, 2018
    Publication date: November 1, 2018
    Applicant: INTEL CORPORATION
    Inventors: BERNHARD SELL, OLEG GOLONZKA
  • Publication number: 20180287050
    Abstract: MTJ material stacks with a laterally strained free magnetic layer, STTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular pMTJ material stacks included free magnetic layers that are compressively strained laterally by a surrounding material, which increases coercive field strength for a more stable device. In some embodiments, a pMTJ material stack is encased in a compressive-stressed material. In some further embodiments, a pMTJ material stack is encased first in a dielectric shell, permitting a conductive material to be deposited over the shell as the compressive-stressed, strain-inducing material layer.
    Type: Application
    Filed: September 25, 2015
    Publication date: October 4, 2018
    Applicant: Intel Corporation
    Inventors: Prashanth P. Madras, MD Tofizur Rahman, Christopher J. Wiegand, Brian Maertz, Oleg Golonzka, Kevin P. O'Brien, Mark L. Doczy, Brian S. Doyle, Tahir Ghani, Kaan Oguz
  • Patent number: 10079266
    Abstract: Embodiments of the present disclosure describe techniques and configurations associated with modulation of magnetic properties through implantation. In one embodiment, a method includes providing a substrate having an integrated circuit (IC) structure disposed on the substrate, the IC structure including a magnetizable material, implanting at least a portion of the magnetizable material with a dopant and magnetizing the magnetizable material, wherein said magnetizing is inhibited in the implanted portion of the magnetizable material. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: September 18, 2018
    Assignee: Intel Corporation
    Inventors: Christopher J. Wiegand, Md Tofizur Rahman, Oleg Golonzka, Anant H. Jahagirdar, Mengcheng Lu
  • Publication number: 20180248114
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular MTJ material stacks with free magnetic layers are magnetically coupled through a metal material layer for improved stability and low damping. In some advantageous embodiments, layers of a free magnetic material stack are magnetically coupled through a coupling layer of a metal comprising at least molybdenum (Mo). The Mo may be in pure form or alloyed with other constituents.
    Type: Application
    Filed: September 25, 2015
    Publication date: August 30, 2018
    Applicant: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Publication number: 20180248115
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include one or more electrode interface material layers disposed between a an electrode metal, such as TiN, and a seed layer of an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. The electrode interface material layers may include either or both of a Ta material layer or CoFeB material layer. In some Ta embodiments, a Ru material layer may be deposited on a TiN electrode surface, followed by the Ta material layer. In some CoFeB embodiments, a CoFeB material layer may be deposited directly on a TiN electrode surface, or a Ta material layer may be deposited on the TiN electrode surface, followed by the CoFeB material layer.
    Type: Application
    Filed: September 25, 2015
    Publication date: August 30, 2018
    Applicant: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, MD Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman