Patents by Inventor Oliver Dernovsek

Oliver Dernovsek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7030050
    Abstract: The invention relates to a glass ceramic mass containing at least one oxide ceramic containing barium, titanium and at least one rare earth metal Rek; and at least one glass material containing at least one oxide with boron, at least one oxide with silicon and at least one oxide with at least one bivalent metal Me2+. The glass ceramic mass is characterised in that the glass material contains at least one oxide with bismuth, especially bismuth trioxide. The oxide ceramic is especially a microwave ceramic of formula BaRek2Ti4O12, Rek being neodymium or samarium. The composition of the oxide ceramic remains essentially constant during the sintering of the glass ceramic, enabling the material properties of the glass ceramic mass, such as permittivity (20–80), quality (800–5000) and Tkf (±20 ppm/K) to be specifically predetermined. The glass ceramic mass is characterised by a densification temperature of under 910° C.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: April 18, 2006
    Assignees: Bundesanstalt fur Materialforschung und - prufung, W. C. Heraeus GmbH & Co. KG
    Inventors: Oliver Dernovsek, Markus Eberstein, Ulrich Fritz, Marion Gemeinert, Christina Modes, Gabriele Preu, Wolfgang Arno Schiller, Wolfram Wersing
  • Publication number: 20050181222
    Abstract: Masking layers for components according to the prior art react with the base material of the component and/or are difficult to remove again. The component according to the invention has a masking layer which can very easily be removed following coating of the components, since on the one hand the bonding between the masking layer and the base material of the component is poor, or the masking layer can easily be removed through penetration of a liquid.
    Type: Application
    Filed: March 28, 2003
    Publication date: August 18, 2005
    Inventors: Nigel-Philip Cox, Oliver Dernovsek, Ralph Reiche
  • Patent number: 6709999
    Abstract: A molded part of a ceramic material derived from polymers includes a composite body of a single-phase or multi-phase, amorphous, partially crystalline or crystalline matrix of silicon carbide (SiC), silicon nitride (Si3N4), silicon dioxide (SiO2) or mixtures thereof. The matrix contains graphite inclusions and the density of the ceramic material is at least 85% of the theoretical value. The molded part is produced by subjecting a mixture formed of a polymer component in an amount of 30 to 80 wt. % referred to the total weight of the mixture, fillers in an amount of 0 to 30 wt. % and graphite in an amount of 10 to 70 wt. %, to a forming process with heating to effect crosslinking of the polymer components, followed by a pyrolysis process. In particular, the molded parts are produced from polymers of the group including polysilanes, polysiloxanes, polysilazanes or polycarbosilanes. A process for producing ceramic molded parts and a sliding element having a molded part are also provided.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: March 23, 2004
    Assignee: SGL Carbon AG
    Inventors: Peter Greil, Oliver Dernovsek, Hans-Michael Güther, Ulrich Wislsperger
  • Publication number: 20040014585
    Abstract: The invention relates to a glass ceramic mass containing at least one oxide ceramic containing barium, titanium and at least one rare earth metal Rek; and at least one glass material containing at least one oxide with boron, at least one oxide with silicon and at least one oxide with at least one bivalent metal Me2+. The glass ceramic mass is characterised in that the glass material contains at least one oxide with bismuth, especially bismuth trioxide. The oxide ceramic is especially a microwave ceramic of formula BaRek2Ti4O12, Rek being neodymium or samarium. The composition of the oxide ceramic remains essentially constant during the sintering of the glass ceramic, enabling the material properties of the glass ceramic mass, such as permittivity (20-80), quality (800-5000) and Tkf (±20 ppm/K) to be specifically predetermined. The glass ceramic mass is characterised by a densification temperature of under 910 ° C.
    Type: Application
    Filed: August 8, 2003
    Publication date: January 22, 2004
    Inventors: Oliver Dernovsek, Markus Eberstein, Ulrich Fritz, Marion Gemeinert, Christina Modes, Gabriele Preu, Wolfgang Arno Schiller, Wolfram Wersing
  • Publication number: 20040014584
    Abstract: The invention relates to a glass ceramic mass, comprising at least one oxide ceramic, containing barium, titanium and at least one rare earth metal Rek and at least one glass material, containing at least one oxide with boron and at least one oxide of a rare earth metal Reg. The glass material further contains either an oxide of a tetravalent metal Me4+, or at least one oxide of a pentavalent metal Me5+. A compression of the glass ceramic mass occurs above all by viscous flow. A low vitrification temperature can thus be achieved. Crystallisation products are produced during and/or after the compression. The rare earth oxide and the crystallisation products can be used to pre-determine each of a dielectric material property of the glass ceramic mass in a wide range such as permittivity (15-80), Q (350-5000) and Tf value (±20 ppm/K). The glass ceramic mass is characterised by a vitrification temperature of below 850° C.
    Type: Application
    Filed: August 5, 2003
    Publication date: January 22, 2004
    Inventors: Oliver Dernovsek, Markus Eberstein, Wolfgang Guther, Christina Modes, Gabriele Preu, Wolfgang Arno Schiller, Barbel Schulz, Wolfram Wersing
  • Publication number: 20020035026
    Abstract: A molded part of a ceramic material derived from polymers includes a composite body of a single-phase or multi-phase, amorphous, partially crystalline or crystalline matrix of silicon carbide (SiC), silicon nitride (Si3N4), silicon dioxide (SiO2) or mixtures thereof. The matrix contains graphite inclusions and the density of the ceramic material is at least 85% of the theoretical value. The molded part is produced by subjecting a mixture formed of a polymer component in an amount of 30 to 80 wt. % referred to the total weight of the mixture, fillers in an amount of 0 to 30 wt. % and graphite in an amount of 10 to 70 wt. %, to a forming process with heating to effect crosslinking of the polymer components, followed by a pyrolysis process. In particular, the molded parts are produced from polymers of the group including polysilanes, polysiloxanes, polysilazanes or polycarbosilanes. A process for producing ceramic molded parts and a sliding element having a molded part are also provided.
    Type: Application
    Filed: June 18, 2001
    Publication date: March 21, 2002
    Inventors: Peter Greil, Oliver Dernovsek, Hans-Michael Guther, Ulrich Wislsperger