Patents by Inventor Paige M. Holm

Paige M. Holm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170212175
    Abstract: A magnetic field sensor comprises a sensor bridge having multiple sensor legs. Each sensor leg includes magnetoresistive sense elements, each comprising a pinned layer having a reference magnetization parallel to a plane of the sensor and a sense layer having a sense magnetization. A permanent magnet layer spaced apart from the sense elements magnetically biases the sense magnetization into an out-of-plane direction that is non-perpendicular to the plane of the sensor. The sense magnetization of a portion of the sense elements is oriented in a first direction and the sense magnetization of a different portion of the sense elements is oriented in a second direction differing from the first direction to generate two unique bias field vectors of the sense layers which enables detection of the external magnetic field in a sensing direction that is perpendicular to the plane of the magnetic field sensor without inter-axis coupling of sensor response.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Paige M. Holm, Lianjun Liu
  • Patent number: 9664755
    Abstract: A sensor package includes a magnetic field sensor, where the magnetic field sensor includes an in-plane sense element and a flux guide configured to direct a magnetic field oriented perpendicular to a plane of the magnetic field sensor into the plane. A current carrying structure is positioned proximate the flux guide and circuitry is coupled to the current carrying structure. The current carrying structure includes a continuous coil having multiple substantially parallel conductive segments connected by additional conductive segments oriented Perpendicular to the parallel conductive segments to form a continuous series of loops. The circuitry is configured to provide an electric current to the continuous coil such that the electric current flows through each of the parallel conductive segments, wherein the electric current generates a magnetic field, and the magnetic field is applied to the flux guide to recondition a magnetic polarization of the flux guide.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventors: Paige M. Holm, Lianjun Liu
  • Patent number: 9543067
    Abstract: Methods, systems and apparatus are provided to apply a magnetic pre-conditioning to magnetic tunneling junction (MTJ) sensors and other micro-magnetic devices after fabrication but before testing, trimming or other subsequent processing. The fabricated sensor device is passed through a magnetic field that has a known direction and orientation relative to the device so that the device is placed into a known state prior to final testing and trimming. Various embodiments allow the field to be applied in situ by a permanent magnet or electromagnet as the devices are being processed by a conventional device handler or similar processing system.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: January 10, 2017
    Assignee: NXP USA, INC.
    Inventors: Carlos M. Acuna, Mohammad A. Faruque, Kevin R. Fugate, Todd D. Hoffmann, Paige M. Holm, Peter T. Jones, Rigoberto Lopez, Jr., William D. McWhorter
  • Publication number: 20160334472
    Abstract: A sensor package includes a magnetic field sensor and a corruption detection and reset subsystem. The magnetic field sensor has a magnetic sense element and a ferromagnetic structure characterized by a baseline magnetic state. The subsystem includes a detector element, a processor, and current carrying structure positioned in proximity to the ferromagnetic structure. Methodology performed by the subsystem entails detecting at the detector element an altered magnetic state of the ferromagnetic structure, where the altered magnetic state differs from the baseline magnetic state. Methodology further entails determining, at the processor, when a reset action is needed in response to the altered magnetic state and applying a reset magnetic field to the ferromagnetic structure to reset the ferromagnetic structure from the altered magnetic state to the baseline magnetic state.
    Type: Application
    Filed: May 12, 2015
    Publication date: November 17, 2016
    Inventors: PAIGE M. HOLM, Lianjun Liu
  • Publication number: 20160204089
    Abstract: A device package includes a substrate having an active surface. Electrical connection bumps are deposited on the active surface and are arranged in an array having a perimeter. At least one electronic component is formed at a region of the active surface, where the region is located outside of the perimeter of the array of electrical connection bumps. When the device package is coupled with external circuitry via the electrical connection bumps, the region at which the electronic component is formed is suspended over the electronic circuitry. This region is subject to a lower stress profile than a region of the active surface circumscribed by the perimeter. Thus, stress sensitive electronic components can be located in this lower stress region of the active surface.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 14, 2016
    Inventors: PAIGE M. HOLM, VIJAY SARIHAN
  • Patent number: 9318376
    Abstract: A front-end-of-line through-substrate via is provided for application in certain semiconductor device fabrication, including microelectromechanical (MEMS) devices. The through-substrate via (TSV) has a conductive element formed from the cylindrical core of a ring-shaped isolating etch trench. The conductivity of the core is provided by in-diffusion of dopants from a highly-doped layer deposited along sidewalls of the core within the etched trench. The highly-doped layer used as the diffusion source can be either conductive or insulating, depending upon the application. The highly-doped diffusion source layer can be retained after diffusion to further contribute to the conductivity of the TSV, to help fill or seal the via, or can be partially or completely removed. Embodiments provide for the drive in-diffusion process to use a same heating step as that used for thermal oxidation to fill or seal the via trench. Other embodiments can provide for diffusion elements from a gaseous source.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 19, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paige M Holm, Lianjun Liu, Ruben B. Montez
  • Publication number: 20150346290
    Abstract: A magnetic field sensor includes in-plane sense elements located in a plane of the magnetic field sensor and configured to detect a magnetic field oriented perpendicular to the plane. A current carrying structure is positioned proximate the magnetic field sensor and includes at least one coil surrounding the in-plane sense elements. An electric current is applied to the coil to create a self-test magnetic field to be sensed by the sense elements. The coil may be vertically displaced from the plane in which the sense elements are located and laterally displaced from an area occupied by the sense elements to produce both Z-axis magnetic field components and lateral magnetic field components of the self-test magnetic field. The sense elements are arranged within the coil and interconnected to cancel the lateral magnetic field components, while retaining the Z-axis magnetic field components to be used for self-test of the magnetic field sensor.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paige M. Holm, Lianjun Liu
  • Patent number: 9165886
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94) Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: October 20, 2015
    Assignee: FREESCALE SEMICONDUCTOR,INC
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Publication number: 20150204951
    Abstract: A sensor package includes a magnetic field sensor, where the magnetic field sensor includes an in-plane sense element and a flux guide configured to direct a magnetic field oriented perpendicular to a plane of the magnetic field sensor into the plane. A current carrying structure is positioned proximate to the flux guide and circuitry is coupled to the current carrying structure. Conductive segments of the current carrying structure are oriented substantially perpendicular to a length of the flux guide, and a subset of adjacent conductive segments are configured such that electric current flows in the same direction through each of the conductive segments of the subset. The circuitry is configured to provide an electric current to an input of the current carrying structure, wherein the electric current generates a magnetic field, and the magnetic field is applied to the flux guide to recondition a magnetic polarization of the flux guide.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 23, 2015
    Inventors: Paige M. Holm, Lianjun Liu
  • Publication number: 20150179325
    Abstract: Methods, systems and apparatus are provided to apply a magnetic pre-conditioning to magnetic tunneling junction (MTJ) sensors and other micro-magnetic devices after fabrication but before testing, trimming or other subsequent processing. The fabricated sensor device is passed through a magnetic field that has a known direction and orientation relative to the device so that the device is placed into a known state prior to final testing and trimming. Various embodiments allow the field to be applied in situ by a permanent magnet or electromagnet as the devices are being processed by a conventional device handler or similar processing system.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Inventors: CARLOS M. ACUNA, MOHAMMAD A. FARUQUE, KEVIN R. FUGATE, TODD D. HOFFMANN, PAIGE M. HOLM, PETER T. JONES, RIGOBERTO LOPEZ, JR., WILLIAM D. MCWHORTER
  • Patent number: 9046556
    Abstract: Apparatus, systems, and methods are provided for sensing devices. An exemplary sensing device includes a sensing arrangement on a substrate to sense a first property, a heating arrangement, and a control system coupled to the first sensing arrangement and the heating arrangement to activate the heating arrangement to heat the first sensing arrangement and deactivate the heating arrangement while obtaining one or more measurement values for the first property from the first sensing arrangement.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: June 2, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Kevin R. Fugate, Edward W. Carstens, Paige M. Holm, Dean W. Miller
  • Patent number: 9040355
    Abstract: A method (70) of forming sensor packages (20) entails providing a sensor wafer (74) having sensors (30) formed on a side (26) positioned within areas (34) delineated by bonding perimeters (36), and providing a controller wafer (82) having control circuitry (42) at one side (38) and bonding perimeters (46) on an opposing side (40). The bonding perimeters (46) of the controller wafer (82) are bonded to corresponding bonding perimeters (36) of the sensor wafer (74) to form a stacked wafer structure (48) in which the control circuitry (42) faces outwardly. The controller wafer (82) is sawn to reveal bond pads (32) on the sensor wafer (74) which are wire bonded to corresponding bond pads (44) formed on the same side (38) of the wafer (82) as the control circuitry (42). The structure (48) is encapsulated in packaging material (62) and is singulated to produce the sensor packages (20).
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: May 26, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Patent number: 9018029
    Abstract: Embodiments of methods of fabricating a sensor device include attaching first and second die to one another to define first and second cavities in which first and second sensors of the sensor device are disposed, respectively. The second die has an opening in communication with the second cavity. The methods further include obstructing the opening, attaching a third die to the second die. The first cavity is hermetically sealed by attaching the first and second die. The second cavity is hermetically sealed by attaching the third die to the second die.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 28, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Lianjun Liu, Raymond M. Roop
  • Publication number: 20150048462
    Abstract: A method (70) of forming sensor packages (20) entails providing a sensor wafer (74) having sensors (30) formed on a side (26) positioned within areas (34) delineated by bonding perimeters (36), and providing a controller wafer (82) having control circuitry (42) at one side (38) and bonding perimeters (46) on an opposing side (40). The bonding perimeters (46) of the controller wafer (82) are bonded to corresponding bonding perimeters (36) of the sensor wafer (74) to form a stacked wafer structure (48) in which the control circuitry (42) faces outwardly. The controller wafer (82) is sawn to reveal bond pads (32) on the sensor wafer (74) which are wire bonded to corresponding bond pads (44) formed on the same side (38) of the wafer (82) as the control circuitry (42). The structure (48) is encapsulated in packaging material (62) and is singulated to produce the sensor packages (20).
    Type: Application
    Filed: October 29, 2014
    Publication date: February 19, 2015
    Inventors: PHILIP H. BOWLES, PAIGE M. HOLM, STEPHEN R. HOOPER, RAYMOND M. ROOP
  • Publication number: 20140124958
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94) Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Publication number: 20140061948
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure (117). The structure includes a sensor wafer (92) and a cap wafer (94). Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers (92, 94). One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers (92, 94, 102) to expose the bond pads (42), forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Patent number: 8659167
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94). Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Publication number: 20140015123
    Abstract: A method (70) of forming sensor packages (20) entails providing a sensor wafer (74) having sensors (30) formed on a side (26) positioned within areas (34) delineated by bonding perimeters (36), and providing a controller wafer (82) having control circuitry (42) at one side (38) and bonding perimeters (46) on an opposing side (40). The bonding perimeters (46) of the controller wafer (82) are bonded to corresponding bonding perimeters (36) of the sensor wafer (74) to form a stacked wafer structure (48) in which the control circuitry (42) faces outwardly. The controller wafer (82) is sawn to reveal bond pads (32) on the sensor wafer (74) which are wire bonded to corresponding bond pads (44) formed on the same side (38) of the wafer (82) as the control circuitry (42). The structure (48) is encapsulated in packaging material (62) and is singulated to produce the sensor packages (20).
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Publication number: 20130335065
    Abstract: Apparatus, systems, and methods are provided for sensing devices. An exemplary sensing device includes a sensing arrangement on a substrate to sense a first property, a heating arrangement, and a control system coupled to the first sensing arrangement and the heating arrangement to activate the heating arrangement to heat the first sensing arrangement and deactivate the heating arrangement while obtaining one or more measurement values for the first property from the first sensing arrangement.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Kevin R. Fugate, Edward W. Carstens, Paige M. Holm, Dean W. Miller
  • Publication number: 20080285813
    Abstract: An apparatus and method is provided for recognizing ear biometrics of an approved user of a wireless device. The apparatus comprises a wireless communication device (50) including a first biometric device (52) for assessing the identity of the user, the biometric device (52) comprising a touch input display (52) including a plurality of pixels for providing a visual output, and a plurality of sensors (84), one each being incorporated within one of the plurality of pixels (82), for recording at least a partial image of a user's ear (10) when the touch input display (52) is placed against an ear (10) of the user in a first mode and for receiving an input in response to being touched by the user in a second mode. A controller (120) is coupled to the first biometric device (52) in the first mode, wherein the controller (120) enables the function when the identity of the user is verified by the first biometric device (52).
    Type: Application
    Filed: May 14, 2007
    Publication date: November 20, 2008
    Applicant: MOTOROLA, INC.
    Inventor: Paige M. Holm