Patents by Inventor Pandi Chelvam Marimuthu

Pandi Chelvam Marimuthu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140217597
    Abstract: A semiconductor device includes a semiconductor die. An encapsulant is disposed around the semiconductor die to form a peripheral area. An interconnect structure is formed over a first surface of the semiconductor die and encapsulant. A plurality of vias is formed partially through the peripheral area of the encapsulant and offset from the semiconductor die. A portion of the encapsulant is disposed over a second surface of the semiconductor die opposite the first surface. The plurality of vias comprises a depth greater than a thickness of the portion of the encapsulant. A first portion of the plurality of vias is formed in a row offset from a side of the semiconductor die. A second portion of the plurality of vias is formed as an array of vias offset from a corner of the semiconductor die. A repair material disposed within the plurality of vias.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu, Kang Chen, Yu Gu
  • Patent number: 8669637
    Abstract: An integrated passive device system is disclosed including forming a first dielectric layer over a semiconductor substrate, depositing a metal capacitor layer on the first dielectric layer, forming a second dielectric layer over the metal capacitor layer, and depositing a metal layer over the second dielectric layer for forming the integrated capacitor, an integrated resistor, an integrated inductor, or a combination thereof.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 11, 2014
    Assignee: Stats ChipPac Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Robert Charles Frye, Pandi Chelvam Marimuthu
  • Patent number: 8587120
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the die. A first insulating layer is formed over the die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is constructed by forming a second insulating layer over the first insulating layer with a second opening having a width less than the first opening and depositing a conductive material into the second opening. The interconnect structure can be a conductive pillar or conductive pad. The interconnect structure has a width less than a width of the first opening. The second conductive layer over the first insulating layer outside the first opening is removed while leaving the second conductive layer under the interconnect structure.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: November 19, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Won Kyoung Choi, Pandi Chelvam Marimuthu
  • Patent number: 8575018
    Abstract: A semiconductor wafer has a first conductive layer formed over its active surface. A first insulating layer is formed over the substrate and first conductive layer. A second conductive layer is formed over the first conductive layer and first insulating layer. A UBM layer is formed around a bump formation area over the second conductive layer. The UBM layer can be two stacked metal layers or three stacked metal layers. The second conductive layer is exposed in the bump formation area. A second insulating layer is formed over the UBM layer and second conductive layer. A portion of the second insulating layer is removed over the bump formation area and a portion of the UBM layer. A bump is formed over the second conductive layer in the bump formation area. The bump contacts the UBM layer to seal a contact interface between the bump and second conductive layer.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: November 5, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Jianmin Fang, Kang Chen, Pandi Chelvam Marimuthu, Rajendra D. Pendse
  • Publication number: 20130277851
    Abstract: A semiconductor device has a modular interconnect unit or interconnect structure disposed in a peripheral region of the semiconductor die. An encapsulant is deposited over the semiconductor die and interconnect structure. A first insulating layer is formed over the semiconductor die and interconnect structure. A plurality of openings is formed in the first insulating layer over the interconnect structure. The openings have a pitch of 40 micrometers. The openings include a circular shape, ring shape, cross shape, or lattice shape. A conductive layer is deposited over the first insulating layer. The conductive layer includes a planar surface. A second insulating layer is formed over the conductive layer. A portion of the encapsulant is removed to expose the semiconductor die and the interconnect structure. The modular interconnect unit includes a vertical interconnect structure. The modular interconnect unit forms part of an interlocking pattern around the semiconductor die.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Yaojian Lin, Kang Chen, Yu Gu, Pandi Chelvam Marimuthu
  • Publication number: 20130249080
    Abstract: A semiconductor device has a semiconductor die with an encapsulant deposited over the semiconductor die. A first insulating layer having high tensile strength and elongation is formed over the semiconductor die and encapsulant. A first portion of the first insulating layer is removed by a first laser direct ablation to form a plurality of openings in the first insulating layer. The openings extend partially through the first insulating layer or into the encapsulant. A second portion of the first insulating layer is removed by a second laser direct ablation to form a plurality of trenches in the first insulating layer. A conductive layer is formed in the openings and trenches of the first insulating layer. A second insulating layer is formed over the conductive layer. A portion of the second insulating layer is removed by a third laser direct ablation. Bumps are formed over the conductive layer.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 26, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu, Kang Chen
  • Publication number: 20130249115
    Abstract: A semiconductor device has a carrier with a die attach area. A semiconductor die is mounted to the die attach area with a back surface opposite the carrier. A modular interconnect unit is mounted over the carrier and around or in a peripheral region around the semiconductor die such that the modular interconnect unit is offset from the back surface of the semiconductor die. An encapsulant is deposited over the carrier, semiconductor die, and modular interconnect unit. A first portion of the encapsulant is removed to expose the semiconductor die and a second portion is removed to expose the modular interconnect unit. The carrier is removed. An interconnect structure is formed over the semiconductor die and modular interconnect unit. The modular interconnect unit includes a vertical interconnect structures or bumps through the semiconductor device. The modular interconnect unit forms part of an interlocking pattern around the semiconductor die.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu, Kang Chen, Yu Gu
  • Publication number: 20130249101
    Abstract: A semiconductor device has a carrier with a die attach area. A semiconductor die is mounted to the die attach area with a back surface opposite the carrier. A modular interconnect unit is mounted over the carrier and around or in a peripheral region around the semiconductor die such that the modular interconnect unit is offset from the back surface of the semiconductor die. An encapsulant is deposited over the carrier, semiconductor die, and modular interconnect unit. A first portion of the encapsulant is removed to expose the semiconductor die and a second portion is removed to expose the modular interconnect unit. The carrier is removed. An interconnect structure is formed over the semiconductor die and modular interconnect unit. The modular interconnect unit includes a vertical interconnect structures or bumps through the semiconductor device. The modular interconnect unit forms part of an interlocking pattern around the semiconductor die.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 26, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu, Kang Chen, Yu Gu
  • Patent number: 8536688
    Abstract: An integrated circuit leadframe and a fabrication method for fabricating the integrated circuit leadframe include forming a leadframe having leads around a die pad that has a peripheral die pad rim. A discrete, alternately staggered surface configuration is formed in the die pad rim. The discrete, alternately staggered surface configuration creates space in the die pad for connecting and separating ground bond wire-bonds and down bond wire-bonds, and provides for locking encapsulant firmly to the die pad.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: September 17, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Hoon Ahn, Pandi Chelvam Marimuthu
  • Publication number: 20130228919
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the semiconductor die. A first insulating layer is formed over the semiconductor die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is formed over the first and second conductive layers within openings of a second insulating layer. The second insulating layer is removed. The interconnect structure can be a conductive pillar or conductive pad. A bump material can be formed over the conductive pillar. A protective coating is formed over the conductive pillar or pad to a thickness less than one micrometer to reduce oxidation. The protective coating is formed by immersing the conductive pillar or pad into the bath containing tin or indium.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 5, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Won Kyoung Choi, Pandi Chelvam Marimuthu
  • Patent number: 8466557
    Abstract: A solder bump confinement system is provided includes a substrate; a contact material patterned on the substrate; an inner passivation layer deposited over the contact material and the substrate; an under bump material pad over the contact material; an under bump material defining layer, having a bump opening contained therein, directly on the under bump material pad in which the under bump material defining layer has a thickness in the range of 200 Angstrom to 1500 Angstrom; and a system interconnect formed over the contact material and coupled to the under bump material defining layer and the under bump material pad through the bump opening.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: June 18, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu, Rajendra D. Pendse
  • Patent number: 8435881
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the semiconductor die. A first insulating layer is formed over the semiconductor die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is formed over the first and second conductive layers within openings of a second insulating layer. The second insulating layer is removed. The interconnect structure can be a conductive pillar or conductive pad. A bump material can be formed over the conductive pillar. A protective coating is formed over the conductive pillar or pad to a thickness less than one micrometer to reduce oxidation. The protective coating is formed by immersing the conductive pillar or pad into the bath containing tin or indium.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: May 7, 2013
    Assignee: STAT ChipPAC, Ltd.
    Inventors: Won Kyoung Choi, Pandi Chelvam Marimuthu
  • Patent number: 8399306
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a substrate having a redistribution line thereon; mounting an integrated circuit to the substrate; and molding a transparent encapsulation over the substrate covering the integrated circuit and the redistribution line and the integrated circuit seen through the transparent encapsulation.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 19, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: JunMo Koo, Pandi Chelvam Marimuthu, Jae Hun Ku, Jose Alvin Caparas, Shariff Dzafir
  • Publication number: 20120326297
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the semiconductor die. A first insulating layer is formed over the semiconductor die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is formed over the first and second conductive layers within openings of a second insulating layer. The second insulating layer is removed. The interconnect structure can be a conductive pillar or conductive pad. A bump material can be formed over the conductive pillar. A protective coating is formed over the conductive pillar or pad to a thickness less than one micrometer to reduce oxidation. The protective coating is formed by immersing the conductive pillar or pad into the bath containing tin or indium.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Won Kyoung Choi, Pandi Chelvam Marimuthu
  • Publication number: 20120326296
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the die. A first insulating layer is formed over the die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is constructed by forming a second insulating layer over the first insulating layer with a second opening having a width less than the first opening and depositing a conductive material into the second opening. The interconnect structure can be a conductive pillar or conductive pad. The interconnect structure has a width less than a width of the first opening. The second conductive layer over the first insulating layer outside the first opening is removed while leaving the second conductive layer under the interconnect structure.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Won Kyoung Choi, Pandi Chelvam Marimuthu
  • Patent number: 8309451
    Abstract: A semiconductor wafer contains a plurality of semiconductor die. The wafer has contact pads formed over its surface. A passivation layer is formed over the wafer. A stress buffer layer is formed over the passivation layer. The stress buffer layer is patterned to expose the contact pads. A metal layer is deposited over the stress buffer layer. The metal layer is a common voltage bus for the semiconductor device in electrical contact with the contact pads. An adhesion layer, barrier layer, and seed layer is formed over the wafer in electrical contact with the contact pads. The metal layer is mounted to the seed layer. Solder bumps or other interconnect structures are formed over the metal layer. A second passivation layer is formed over the metal layer. In an alternate embodiment, a wirebondable layer can be deposited over the metal layer and wirebonds connected to the metal layer.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: November 13, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Stephen A. Murphy, Yaojian Lin, Heap Hoe Kuan, Pandi Chelvam Marimuthu, Hin Hwa Goh
  • Publication number: 20120267800
    Abstract: A semiconductor wafer contains semiconductor die. A first conductive layer is formed over the die. A resistive layer is formed over the die and first conductive layer. A first insulating layer is formed over the die and resistive layer. The wafer is singulated to separate the die. The die is mounted to a temporary carrier. An encapsulant is deposited over the die and carrier. The carrier and a portion of the encapsulant and first insulating layer is removed. A second insulating layer is formed over the encapsulant and first insulating layer. A second conductive layer is formed over the first and second insulating layers. A third insulating layer is formed over the second insulating layer and second conductive layer. A third conductive layer is formed over the third insulating layer and second conductive layer. A fourth insulating layer is formed over the third insulating layer and third conductive layer.
    Type: Application
    Filed: July 6, 2012
    Publication date: October 25, 2012
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye, Pandi Chelvam Marimuthu, Kai Liu
  • Patent number: 8293584
    Abstract: An integrated circuit package system is provided including forming a wafer having a back side and an active side, forming a recess in the wafer from the back side, forming a cover in the recess, and singulating the wafer at the recess filled with the cover.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 23, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: Dennis Guillermo, Sheila Rima C. Magno, Ma. Shirley Asoy, Pandi Chelvam Marimuthu
  • Publication number: 20120261817
    Abstract: A semiconductor wafer contains a plurality of semiconductor die. The wafer has contact pads formed over its surface. A passivation layer is formed over the wafer. A stress buffer layer is formed over the passivation layer. The stress buffer layer is patterned to expose the contact pads. A metal layer is deposited over the stress buffer layer. The metal layer is a common voltage bus for the semiconductor device in electrical contact with the contact pads. An adhesion layer, barrier layer, and seed layer is formed over the wafer in electrical contact with the contact pads. The metal layer is mounted to the seed layer. Solder bumps or other interconnect structures are formed over the metal layer. A second passivation layer is formed over the metal layer. In an alternate embodiment, a wirebondable layer can be deposited over the metal layer and wirebonds connected to the metal layer.
    Type: Application
    Filed: June 28, 2012
    Publication date: October 18, 2012
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Stephen A. Murphy, Yaojian Lin, Heap Hoe Kuan, Pandi Chelvam Marimuthu, Hin Hwa Goh
  • Publication number: 20120241927
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a substrate having a redistribution line thereon; mounting an integrated circuit to the substrate; and molding a transparent encapsulation over the substrate covering the integrated circuit and the redistribution line and the integrated circuit seen through the transparent encapsulation.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Inventors: JunMo Koo, Pandi Chelvam Marimuthu, Jae Hun Ku, Jose Alvin Caparas, Shariff Dzafir