Patents by Inventor Patrick Quinn
Patrick Quinn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240277354Abstract: An aspiration catheter including a body having a proximal end and an opposite distal tip with a lumen extending in a longitudinal direction therethrough from the proximal end to the distal tip. The aspiration catheter further includes a stabilizing structural member stabilizing the body relative to the inner wall of the vessel to minimize movement and/or radial expansion of the distal tip of the body while subject to aspiration that otherwise may potentially damage the inner wall of the vessel.Type: ApplicationFiled: February 14, 2024Publication date: August 22, 2024Applicant: Neuravi LimitedInventors: Karl KEATING, AnnaLisa SMULLIN, Aoife GLYNN, Sarah JOHNSON, David QUINN, Peter MONAGHAN, Artur SPYCHALA, Petrica STEFANOV, Avril O’HIGGINS, Jane EGWARI, Colm PYNE, David VALE, Patrick GRIFFIN
-
Publication number: 20240277363Abstract: Cyclic aspiration system including an aspiration catheter and a cyclic aspiration source connected in fluid communication thereto, wherein the cyclic aspiration pressure source produces a cyclic aspiration pressure waveform of intermittently cycling intervals of a vacuum pressure below atmospheric pressure and a positive pressure higher than the vacuum pressure. The system further including a non-powered internal structural impediment disposed within the lumen of the aspiration catheter and configured to engage with a clot capturable therein during resulting movement between the clot and the non-powered internal structural impediment while subject to the cyclic aspiration pressure waveform to assist in capture of the clot. The non-powered internal structural impediment may be permanently attached to the aspiration catheter or a separate component or device independently slidable within the lumen of the aspiration catheter.Type: ApplicationFiled: February 14, 2024Publication date: August 22, 2024Applicant: Neuravi LimitedInventors: Karl KEATING, AnnaLisa SMULLIN, Aoife GLYNN, Sarah JOHNSON, David QUINN, David VALE, Patrick GRIFFIN, Tommy GIBBONS, Chris BROOKS, Patrick BROUWER
-
Patent number: 11931041Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: GrantFiled: May 10, 2021Date of Patent: March 19, 2024Assignee: Covidien LPInventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Publication number: 20230338036Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: ApplicationFiled: June 28, 2023Publication date: October 26, 2023Inventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Patent number: 11730485Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: GrantFiled: December 17, 2019Date of Patent: August 22, 2023Assignee: COVIDIEN LPInventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Publication number: 20230235278Abstract: Protein enriched micro-vesicles and methods of making and using the same are provided. Aspects of the methods include maintaining a cell having a membrane-associated protein comprising a first dimerization domain and a target protein having a second dimerization domain under conditions sufficient to produce a micro-vesicle from the cell, wherein the micro-vesicle includes the target protein. Also provided are cells, reagents and kits that find use in making the micro-vesicles, as well as methods of using the micro-vesicles, e.g., in research and therapeutic applications.Type: ApplicationFiled: March 31, 2023Publication date: July 27, 2023Inventors: Michael Haugwitz, Thomas Patrick Quinn, Andrew Alan Farmer, Montserrat Morell Fernández
-
Patent number: 11678887Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: GrantFiled: December 17, 2019Date of Patent: June 20, 2023Assignee: COVIDIEN LPInventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Patent number: 11643635Abstract: Protein enriched micro-vesicles and methods of making and using the same are provided. Aspects of the methods include maintaining a cell having a membrane-associated protein comprising a first dimerization domain and a target protein having a second dimerization domain under conditions sufficient to produce a micro-vesicle from the cell, wherein the micro-vesicle includes the target protein. Also provided are cells, reagents and kits that find use in making the micro-vesicles, as well as methods of using the micro-vesicles, e.g., in research and therapeutic applications.Type: GrantFiled: August 21, 2020Date of Patent: May 9, 2023Assignee: Takara Bio USA, Inc.Inventors: Michael Haugwitz, Thomas Patrick Quinn, Andrew Alan Farmer, Montserrat Morell Fernández
-
Patent number: 11324513Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: GrantFiled: December 17, 2019Date of Patent: May 10, 2022Assignee: COVIDIEN LPInventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Publication number: 20220125588Abstract: Apparatus and methods for repairing a cardiac valve, e.g., a tricuspid valve, are provided. The apparatus may include a prosthetic device coupled to an elongated support to suspend and maintain the prosthetic device within the cardiac valve. The support may include a proximal elongated shaft detachably coupled, in a delivery state, to a distal elongated shaft coupled to the prosthetic device. The proximal elongated shaft may detach from the distal elongated shaft at a detachment area within the patient responsive to actuation and components of the distal elongated shaft may lock to implant the prosthetic device and the distal elongated shaft within the patient. The prosthetic device may be formed of biocompatible material coupled to a frame, and may have prosthetic leaflets that allows blood to flow through in one direction during a phase of the cardiac cycle (e.g., diastole) but prevent blood regurgitation during the other phase (e.g., systole).Type: ApplicationFiled: January 6, 2022Publication date: April 28, 2022Applicant: CroiValve Ltd.Inventors: Ivan VESELY, Conor QUINN, Aoife MULLIGAN, Paul HENEGHAN, Patrick QUINN, Stephen O'SULLIVAN
-
Patent number: 11304700Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, is directed toward an occlusive device that includes a first mesh having an expanded state in which it curves about a first axis to form a first band, and a second mesh having an expanded state in which it curves about a second axis different than the first axis to form a second band. The second band may be positioned radially inward of the first band such that the device includes first and second overlap regions in which the first band overlaps the second band.Type: GrantFiled: January 9, 2020Date of Patent: April 19, 2022Assignee: COVIDIEN LPInventors: Arturo Rosqueta, Gaurav Krishnamurthy, Jose Gonzalez, Patrick Quinn, Eric Yu
-
Patent number: 11278291Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: GrantFiled: December 17, 2019Date of Patent: March 22, 2022Assignee: COVIDIEN LPInventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Patent number: 11219525Abstract: Apparatus and methods for repairing a cardiac valve, e.g., a tricuspid valve, are provided. The apparatus may include a prosthetic device coupled to an elongated support to suspend and maintain the prosthetic device within the cardiac valve. The support may include a proximal elongated shaft detachably coupled, in a delivery state, to a distal elongated shaft coupled to the prosthetic device. The proximal elongated shaft may detach from the distal elongated shaft at a detachment area within the patient responsive to actuation and components of the distal elongated shaft may lock to implant the prosthetic device and the distal elongated shaft within the patient. The prosthetic device may be formed of biocompatible material coupled to a frame, and may have prosthetic leaflets that allows blood to flow through in one direction during a phase of the cardiac cycle (e.g., diastole) but prevent blood regurgitation during the other phase (e.g., systole).Type: GrantFiled: November 30, 2020Date of Patent: January 11, 2022Assignee: CroiValve Ltd.Inventors: Ivan Vesely, Conor Quinn, Aoife Mulligan, Paul Heneghan, Patrick Quinn, Stephen O'Sullivan
-
Publication number: 20210353299Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: ApplicationFiled: May 10, 2021Publication date: November 18, 2021Inventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Patent number: 11170408Abstract: An interface is processed for dynamically rendering an interactive geographical map. Custom-defined geographical boundaries are defined within the map. Customers currently geolocated within the geographical boundaries are identified. A custom-defined promotion is dynamically sent to devices operated by the customers and located within the geographical boundaries.Type: GrantFiled: July 28, 2017Date of Patent: November 9, 2021Assignee: NCR CorporationInventors: Abdul Khaliq Zaheer, Samwimbila Malibuye Nanagila Akpan, Curtis Patrick Quinn Evans
-
Patent number: 11129621Abstract: Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.Type: GrantFiled: December 17, 2019Date of Patent: September 28, 2021Assignee: Covidien LPInventors: Gregory Hamel, Patrick Quinn, Arturo Rosqueta, Stephen Sosnowski, Christopher Andrews, Hieu Dang, Dinh Nguyen, Robert Pecor, Minh Q. Dinh, Ahramahzd Tatavoosian
-
Publication number: 20210077257Abstract: Apparatus and methods for repairing a cardiac valve, e.g., a tricuspid valve, are provided. The apparatus may include a prosthetic device coupled to an elongated support to suspend and maintain the prosthetic device within the cardiac valve. The support may include a proximal elongated shaft detachably coupled, in a delivery state, to a distal elongated shaft coupled to the prosthetic device. The proximal elongated shaft may detach from the distal elongated shaft at a detachment area within the patient responsive to actuation and components of the distal elongated shaft may lock to implant the prosthetic device and the distal elongated shaft within the patient. The prosthetic device may be formed of biocompatible material coupled to a frame, and may have prosthetic leaflets that allows blood to flow through in one direction during a phase of the cardiac cycle (e.g., diastole) but prevent blood regurgitation during the other phase (e.g., systole).Type: ApplicationFiled: November 30, 2020Publication date: March 18, 2021Applicant: CroiValve Ltd.Inventors: Ivan VESELY, Conor QUINN, Aoife MULLIGAN, Paul HENEGHAN, Patrick QUINN, Stephen O'SULLIVAN
-
Patent number: 10936998Abstract: A method, computer system, and computer program product digitally manipulate a human resources workflow on a mobile device. A selection of a human resources operation is received from a mobile application executing on the mobile device; a business rule corresponding to the human resources operation is identified. The business rule comprises a plurality of linked metadata objects forming a syntax tree. The plurality of linked metadata objects is interpreted to implement the business rule, Interpreting comprises sending a first set of chat messages that request input for the plurality of linked metadata objects, and receiving a second set of chat messages that provide the requested input. The human resources operation is performed according to the business rule, generating a workflow stage notification, and publishing the workflow stage notification to a set of mobile devices for display on a timeline of the mobile application.Type: GrantFiled: March 29, 2018Date of Patent: March 2, 2021Assignee: ADP, LLCInventors: Ashish Bidadi, Darshan Kapadia, Amit Maimon, Lohit J. Sarma, Robert Tucker, Tom Tytunovich, Patrick Quinn, Christopher Fahey, Ryan Bannon
-
Publication number: 20210054407Abstract: Dry, e.g., lyophilized, polymeric transfection agent compositions are provided. The dry compositions include a polymeric transfection agent and a buffer. In some instances, the compositions further include one or more nucleic acids. Also provided are methods of making and using the compositions, as well as kits including the compositions.Type: ApplicationFiled: November 5, 2020Publication date: February 25, 2021Inventors: Thomas Patrick Quinn, Sayantan Mitra
-
Publication number: 20200377852Abstract: Protein enriched micro-vesicles and methods of making and using the same are provided. Aspects of the methods include maintaining a cell having a membrane-associated protein comprising a first dimerization domain and a target protein having a second dimerization domain under conditions sufficient to produce a micro-vesicle from the cell, wherein the micro-vesicle includes the target protein. Also provided are cells, reagents and kits that find use in making the micro-vesicles, as well as methods of using the micro-vesicles, e.g., in research and therapeutic applications.Type: ApplicationFiled: August 21, 2020Publication date: December 3, 2020Inventors: Michael Haugwitz, Thomas Patrick Quinn, Andrew Alan Farmer, Montserrat Morell Fernández