Patents by Inventor Patryk GUMANN

Patryk GUMANN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11558955
    Abstract: A quantum mechanical circuit includes a substrate; a first electrical conductor and a second electrical conductor provided on the substrate and spaced apart to provide a gap therebetween; and a third electrical conductor to electrically connect the first electrical conductor and the second electrical conductor. The third electrical conductor is a poor thermal conductor.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: January 17, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Trevor Timpane, Layne A. Berge, Patryk Gumann, Sean Hart, Curtis Eugene Larsen, Michael Good
  • Patent number: 11552380
    Abstract: An architecture for, and techniques for fabricating, a thermal decoupling device are provided. In some embodiments, thermal decoupling device can be included in a thermally decoupled cryogenic microwave filter. In some embodiments, the thermal decoupling device can comprise a dielectric material and a conductive line. The dielectric material can comprise a first channel that is separated from a second channel by a wall of the dielectric material. The conductive line can comprise a first segment and a second segment that are separated by the wall. The wall can facilitate propagation of a microwave signal between the first segment and the second segment and can reduce heat flow between the first segment and the second segment of the conductive line.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: January 10, 2023
    Assignee: INIERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Patryk Gumann, Salvatore Bernardo Olivadese
  • Patent number: 11551125
    Abstract: A quantum computer includes a refrigeration system under vacuum including a containment vessel, a qubit chip contained within a refrigerated vacuum environment defined by the containment vessel. The quantum computer further includes a plurality of interior electromagnetic waveguides and a plurality of exterior electromagnetic waveguides. The quantum computer further includes a hermetic connector assembly operatively connecting the interior electromagnetic waveguides to the exterior electromagnetic waveguides while maintaining the refrigerated vacuum environment. The hermetic connector assembly includes an exterior multi-waveguide connector, an interior multi-waveguide connector, and a dielectric plate arranged between and hermetically sealed with the exterior multi-waveguide connector and the interior multi-waveguide connector. The dielectric plate permits electromagnetic energy when carried by the interior and exterior pluralities of electromagnetic waveguides to pass therethrough.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: January 10, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 11544613
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a relation determining component that can determine relation of a status signal of a quantum computing device to a noise value of the quantum computing device. The system can further include an operation time estimator that can estimate an operation time for the quantum computing device based on the relation of the status signal to the noise value.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: January 3, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Patent number: 11537929
    Abstract: A system for transmission of quantum information for quantum error correction includes an ancilla qubit chip including a plurality of ancilla qubits, and a data qubit chip spaced apart from the ancilla qubit chip, the data qubit chip including a plurality of data qubits. The system includes an interposer coupled to the ancilla qubit chip and the data qubit chip, the interposer including a dielectric material and a plurality of superconducting structures formed in the dielectric material. The superconducting structures enable transmission of quantum information between the plurality of data qubits on the data qubit chip and the plurality of ancilla qubits on the ancilla qubit chip via virtual photons for quantum error correction.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: December 27, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas T. Bronn, Daniela F. Bogorin, Patryk Gumann, Sean Hart, Salvatore B. Olivadese
  • Patent number: 11515460
    Abstract: A quantum computing device is fabricated by forming, on a superconductor layer, a first resist pattern defining a device region and a sensing region within the device region. The superconductor layer within the sensing region is removed, exposing a region of an underlying semiconductor layer outside the device region. The exposed region of the semiconductor layer is implanted, forming an isolation region surrounding the device region. Using an etching process subsequent to the implanting, the sensing region and a portion of the device region of the superconductor layer adjacent to the isolation region are exposed. By depositing a first metal layer within the sensing region, a tunnel junction gate is formed. A reflectrometry wire comprising a second metal within the reflectrometry region is formed. A nanorod contact using the second metal within the portion of the device region outside the sensing region is formed.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: November 29, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Sean Hart, Ning Li, Stephen W. Bedell, Patryk Gumann
  • Patent number: 11430831
    Abstract: A quantum system includes a qubit array comprising a plurality of qubits. A bus resonator is coupled between at least one pair of qubits in the qubit array. A switch is coupled between the at least one qubit pair of qubits.
    Type: Grant
    Filed: June 20, 2020
    Date of Patent: August 30, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Patryk Gumann, Andrew W. Cross, Sean Hart, Jay Michael Gambetta
  • Patent number: 11425841
    Abstract: Devices, systems, methods, and computer-implemented methods to facilitate employing thermalizing materials in an enclosure for quantum computing devices are provided. According to an embodiment, a system can comprise a quantum computing device and an enclosure having the quantum computing device disposed within the enclosure. The system can further comprise a thermalizing material disposed within the enclosure, with the thermalizing material being adapted to thermally link a cryogenic device to the quantum computing device.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: August 23, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean Hart, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Patryk Gumann, Salvatore Bernardo Olivadese
  • Patent number: 11424522
    Abstract: Techniques for facilitating reduced thermal resistance attenuator on high-thermal conductivity substrates for quantum applications are provided. A device can comprise a substrate that provides a thermal conductivity level that is more than a defined thermal conductivity level. The device can also comprise one or more grooved transmission lines formed in the substrate. The one or more grooved transmission lines can comprise a powder substance. Further, the device can comprise one or more copper heat sinks formed in the substrate. The one or more copper heat sinks can provide a ground connection. Further, the one or more copper heat sinks can be formed adjacent to the one or more grooved transmission lines.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: August 23, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Salvatore Bernardo Olivadese, Patryk Gumann, Jay M. Gambetta, Jerry M. Chow
  • Patent number: 11417822
    Abstract: A system includes a quantum processor includes a plurality of qubits. For each qubit, there is a circulator operative to receive a control signal and an output signal from the qubit. An isolator is coupled to an output of the circulator. A quantum-limited amplifier is coupled to an output of the isolator and configured to provide an output of the qubit. A multiplexor (MUX) is configured to frequency multiplex the outputs of at least two of the plurality of qubits as a single output of the quantum processor.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 16, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicholas Torleiv Bronn, Daniela Florentina Bogorin, Patryk Gumann, Sean Hart, Salvatore Bernardo Olivadese
  • Publication number: 20220238663
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate a suspended Majorana fermion device comprising an ion implant defined nanorod in a semiconducting device are provided. According to an embodiment, a quantum computing device can comprise a Majorana fermion device coupled to an ion implanted region. The quantum computing device can further comprise an encapsulation film coupled to the ion implanted region and a substrate layer. The encapsulation film suspends the Majorana fermion device in the quantum computing device.
    Type: Application
    Filed: April 18, 2022
    Publication date: July 28, 2022
    Inventors: Steven J. Holmes, Devendra K. Sadana, Sean Hart, Patryk Gumann, Stephen W. Bedell, Ning Li
  • Publication number: 20220221198
    Abstract: Techniques facilitating mechanical vibration management for cryogenic environments are provided. In one example, a system can comprise a processor that executes computer executable components stored in memory. The computer executable components can comprise a linearization component and a drive component. The linearization component can translate data indicative of a nonlinear drive signal into a linear drive signal. The drive component can dynamically control operation of a compressor of a cryocooler using the linear drive signal. The cryocooler can provide cooling capacity for a cryogenic environment.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Jerry M. Chow, Patryk Gumann
  • Publication number: 20220219950
    Abstract: Techniques facilitating increased operational reliability for jib cranes are provided. In one example, a jib crane can comprise a mast, a shaft mechanism, and a rod. The mast can extend vertically from a base structure. The shaft mechanism can be disposed within the mast. The rod can be coupled to a boom arm and can be disposed within the shaft mechanism. Rotation of the rod can facilitate continuous rotation of the boom arm about a longitudinal axis of the rod with respect to the base structure.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Patryk Gumann, Sean Hart, Valerio A. Grendanin, Raymond A. Watters, David Zarsky, Gilbert Bauer
  • Publication number: 20220221108
    Abstract: Techniques facilitating multiple cryogenic systems sectioned within a common vacuum space are provided. In one example, a cryostat can comprise a plurality of thermal stages and a thermal switch. The plurality of thermal stages can intervene between a 4-Kelvin (K) stage and a Cold Plate stage. The plurality of thermal stages can include a Still stage and an intermediate thermal stage that can be directly coupled mechanically to the Still stage via a support rod. The thermal switch can be coupled to the intermediate thermal stage and an adjacent thermal stage. The thermal switch can facilitate modifying a thermal profile of the cryostat by providing a switchable thermal path between the intermediate thermal stage and the adjacent thermal stage.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Antonio Corcoles-Gonzalez, Patryk Gumann, Jerry M. Chow
  • Publication number: 20220221104
    Abstract: Techniques facilitating efficient thermal profile management within cryogenic environments are provided. In one example, a cryostat can comprise a plurality of thermal stages intervening between a 4-Kelvin (K) stage and a Cold Plate stage. The plurality of thermal stages can include a Still stage and an intermediate thermal stage that provides additional cooling capacity for the cryostat. The intermediate thermal stage can be directly coupled mechanically to the Still stage via a support rod.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Jerry M. Chow, Patryk Gumann
  • Publication number: 20220221107
    Abstract: Techniques facilitating custom thermal shields for cryogenic environments are provided. In one example, a cryostat can comprise a thermal shield extending between a thermal stage and a base structure coupled to a bottom plate of an outer vacuum chamber. The thermal stage can be coupled to a top plate of the outer vacuum chamber. The thermal shield can provide access to a sample mounting surface encompassed within the thermal shield from a region external to the outer vacuum chamber via the top and bottom plates of the outer vacuum chamber.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Patryk Gumann, Valerio A. Grendanin, Sean Hart, David C. Mckay, Jerry M. Chow, David Zarsky, Gilbert Bauer
  • Publication number: 20220221106
    Abstract: Techniques facilitating low thermal conductivity support systems within cryogenic environments are provided. In one example, a cryostat can comprise a support rod and a washer. The support rod can couple first and second thermal stages of the cryostat. The washer can intervene between the support rod and the first thermal stage. The washer can thermally isolate the support rod and the first thermal stage.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Patryk Gumann, Valerio A. Grendanin, Jerry M. Chow
  • Publication number: 20220221105
    Abstract: Techniques facilitating transfer port systems for cryogenic environments are provided. In one example, an outer vacuum chamber of a cryostat can comprise a sidewall encompassing an inner chamber comprising a sample mounting surface. The sidewall can comprise a feedthrough port providing access to the sample mounting surface from a region external to the outer vacuum chamber.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Jerry M. Chow, Patryk Gumann
  • Patent number: 11380969
    Abstract: An on-chip microwave filter circuit includes a substrate formed of a first material that exhibits at least a threshold level of thermal conductivity, wherein the threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum computing circuit operates. The filter circuit further includes a dispersive component configured to filter a plurality of frequencies in an input signal, the dispersive component including a first transmission line disposed on the substrate, the first transmission line being formed of a second material that exhibits at least a second threshold level of thermal conductivity, where the second threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum computing circuit operates. The dispersive component further includes a second transmission line disposed on the substrate, the second transmission line being formed of the second material.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: July 5, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Patryk Gumann, Salvatore B. Olivadese, Markus Brink
  • Patent number: 11349060
    Abstract: A device includes a first substrate formed of a first material that exhibits a threshold level of thermal conductivity. The threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates. In an embodiment, the device also includes a second substrate disposed in a recess of the first substrate, the second substrate formed of a second material that exhibits a second threshold level of thermal conductivity. The second threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates. In an embodiment, at least one qubit is disposed on the second substrate. In an embodiment, the device also includes a transmission line configured to carry a microwave signal between the first substrate and the second substrate.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: May 31, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Patryk Gumann, Salvatore Bernardo Olivadese, Jerry M. Chow