Patents by Inventor Paul A. Merolla

Paul A. Merolla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9588937
    Abstract: Embodiments of the invention relate to an array of processor core circuits with reversible tiers. One embodiment comprises multiple tiers of core circuits and multiple switches for routing packets between the core circuits. Each tier comprises at least one core circuit. Each switch comprises multiple router channels for routing packets in different directions relative to the switch, and at least one routing circuit configured for reversing a logical direction of at least one router channel.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9563841
    Abstract: Embodiments of the invention relate to a globally asynchronous and locally synchronous neuromorphic network. One embodiment comprises generating a synchronization signal that is distributed to a plurality of neural core circuits. In response to the synchronization signal, in at least one core circuit, incoming spike events maintained by said at least one core circuit are processed to generate an outgoing spike event. Spike events are asynchronously communicated between the core circuits via a routing fabric comprising multiple asynchronous routers.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 9558443
    Abstract: One embodiment provides a system comprising a memory device for maintaining deterministic neural data relating to a digital neuron and a logic circuit for deterministic neural computation and stochastic neural computation. Deterministic neural computation comprises processing a neuronal state of the neuron based on the deterministic neural data maintained. Stochastic neural computation comprises generating stochastic neural data relating to the neuron and processing the neuronal state of the neuron based on the stochastic neural data generated.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: January 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160358066
    Abstract: Embodiments of the invention relate to a neural network system for simulating neurons of a neural model. One embodiment comprises a memory device that maintains neuronal states for multiple neurons, a lookup table that maintains state transition information for multiple neuronal states, and a controller unit that manages the memory device. The controller unit updates a neuronal state for each neuron based on incoming spike events targeting said neuron and state transition information corresponding to said neuronal state.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Paul A. Merolla, Dharmendra S. Modha
  • Publication number: 20160335535
    Abstract: One embodiment of the invention provides a system for mapping a neural network onto a neurosynaptic substrate. The system comprises a reordering unit for reordering at least one dimension of an adjacency matrix representation of the neural network. The system further comprises a mapping unit for selecting a mapping method suitable for mapping at least one portion of the matrix representation onto the substrate, and mapping the at least one portion of the matrix representation onto the substrate utilizing the mapping method selected. The system further comprises a refinement unit for receiving user input regarding at least one criterion relating to accuracy or resource utilization of the substrate. The system further comprises an evaluating unit for evaluating each mapped portion against each criterion. Each mapped portion that fails to satisfy a criterion may be remapped to allow trades offs between accuracy and resource utilization of the substrate.
    Type: Application
    Filed: March 18, 2015
    Publication date: November 17, 2016
    Inventors: Arnon Amir, Rathinakumar Appuswamy, Pallab Datta, Myron D. Flickner, Paul A. Merolla, Dharmendra S. Modha, Benjamin G. Shaw
  • Publication number: 20160321537
    Abstract: Embodiments of the invention relate to a neural network circuit comprising a memory block for maintaining neuronal data for multiple neurons, a scheduler for maintaining incoming firing events targeting the neurons, and a computational logic unit for updating the neuronal data for the neurons by processing the firing events. The network circuit further comprises at least one permutation logic unit enabling data exchange between the computational logic unit and at least one of the memory block and the scheduler. The network circuit further comprises a controller for controlling the computational logic unit, the memory block, the scheduler, and each permutation logic unit.
    Type: Application
    Filed: March 28, 2014
    Publication date: November 3, 2016
    Applicant: International Business Machines Corporation
    Inventors: Filipp A. Akopyan, Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160321539
    Abstract: The present invention provides a system comprising multiple core circuits. Each core circuit comprises multiple electronic axons for receiving event packets, multiple electronic neurons for generating event packets, and a fanout crossbar including multiple electronic synapse devices for interconnecting the neurons with the axons. The system further comprises a routing system for routing event packets between the core circuits. The routing system virtually connects each neuron with one or more programmable target axons for the neuron by routing each event packet generated by the neuron to the target axons. Each target axon for each neuron of each core circuit is an axon located on the same core circuit as, or a different core circuit than, the neuron.
    Type: Application
    Filed: March 28, 2014
    Publication date: November 3, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160323137
    Abstract: Embodiments of the invention provide a neurosynaptic network circuit comprising multiple neurosynaptic devices including a plurality of neurosynaptic core circuits for processing one or more data packets. The neurosynaptic devices further include a routing system for routing the data packets between the core circuits. At least one of the neurosynaptic devices is faulty. The routing system is configured for selectively bypassing each faulty neurosynaptic device when processing and routing the data packets.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 3, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9466022
    Abstract: Embodiments of the invention relate to a neural network system for simulating neurons of a neural model. One embodiment comprises a memory device that maintains neuronal states for multiple neurons, a lookup table that maintains state transition information for multiple neuronal states, and a controller unit that manages the memory device. The controller unit updates a neuronal state for each neuron based on incoming spike events targeting said neuron and state transition information corresponding to said neuronal state.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: October 11, 2016
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Paul A. Merolla, Dharmendra S. Modha
  • Publication number: 20160275395
    Abstract: One embodiment of the invention provides a system for mapping a neural network onto a neurosynaptic substrate. The system comprises a metadata analysis unit for analyzing metadata information associated with one or more portions of an adjacency matrix representation of the neural network, and a mapping unit for mapping the one or more portions of the matrix representation onto the neurosynaptic substrate based on the metadata information.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 22, 2016
    Inventors: Arnon Amir, Rathinakumar Appuswamy, Pallab Datta, Myron D. Flickner, Paul A. Merolla, Dharmendra S. Modha, Benjamin G. Shaw
  • Publication number: 20160260008
    Abstract: Embodiments of the invention relate to a time-division multiplexed neurosynaptic module with implicit memory addressing for implementing a universal substrate of adaptation. One embodiment comprises a neurosynaptic device including a memory device that maintains neuron attributes for multiple neurons. The module further includes multiple bit maps that maintain incoming firing events for different periods of delay and a multi-way processor. The processor includes a memory array that maintains a plurality of synaptic weights. The processor integrates incoming firing events in a time-division multiplexing manner. Incoming firing events are integrated based on the neuron attributes and the synaptic weights maintained.
    Type: Application
    Filed: May 13, 2016
    Publication date: September 8, 2016
    Inventors: John V. Arthur, Bernard V. Brezzo, Leland Chang, Daniel J. Friedman, Paul A. Merolla, Dharmendra S. Modha, Robert K. Montoye, Jae-sun Seo, Jose A. Tierno
  • Publication number: 20160247062
    Abstract: One embodiment of the invention provides a method comprising defining a brainlet representing a platform-agnostic network of neurons, synapses, and axons. The method further comprises compiling the brainlet into a corelet for mapping onto neurosynaptic substrate, and mapping the corelet onto the neurosynaptic substrate. The corelet is compatible with one or more conditions related to the neurosynaptic substrate.
    Type: Application
    Filed: February 19, 2015
    Publication date: August 25, 2016
    Inventors: Arnon Amir, David J. Berg, Pallab Datta, Myron D. Flickner, Paul A. Merolla, Dharmendra S. Modha, Benjamin G. Shaw, Brian S. Taba
  • Patent number: 9424284
    Abstract: Embodiments of the invention relate to mapping neural dynamics of a neural model on to a lookup table. One embodiment comprises defining a phase plane for a neural model. The phase plane represents neural dynamics of the neural model. The phase plane is coarsely sampled to obtain state transition information for multiple neuronal states. The state transition information is mapped on to a lookup table.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: August 23, 2016
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Paul A. Merolla, Dharmendra S. Modha
  • Publication number: 20160239393
    Abstract: Embodiments of the invention relate to faulty recovery mechanisms for a three-dimensional (3-D) network on a processor array. One embodiment comprises a multidimensional switch network for a processor array. The switch network comprises multiple switches for routing packets between multiple core circuits of the processor array. The switches are organized into multiple planes. The switch network further comprises a redundant plane including multiple redundant switches. Multiple data paths interconnect the switches. The redundant plane is used to facilitate full operation of the processor array in the event of one or more component failures.
    Type: Application
    Filed: April 21, 2016
    Publication date: August 18, 2016
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, JR., Andrew S. Cassidy, Subramanian Iyer, Paul A. Merolla, Dharmendra S. Modha
  • Publication number: 20160232128
    Abstract: Embodiments of the invention relate to processor arrays, and in particular, a processor array with interconnect circuits for bonding semiconductor dies. One embodiment comprises multiple semiconductor dies and at least one interconnect circuit for exchanging signals between the dies. Each die comprises at least one processor core circuit. Each interconnect circuit corresponds to a die of the processor array. Each interconnect circuit comprises one or more attachment pads for interconnecting a corresponding die with another die, and at least one multiplexor structure configured for exchanging bus signals in a reversed order.
    Type: Application
    Filed: April 19, 2016
    Publication date: August 11, 2016
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arhur, John E. Barth, JR., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160224889
    Abstract: Embodiments of the invention provide a system for scaling multi-core neurosynaptic networks. The system comprises multiple network circuits. Each network circuit comprises a plurality of neurosynaptic core circuits. Each core circuit comprises multiple electronic neurons interconnected with multiple electronic axons via a plurality of electronic synapse devices. An interconnect fabric couples the network circuits. Each network circuit has at least one network interface. Each network interface for each network circuit enables data exchange between the network circuit and another network circuit by tagging each data packet from the network circuit with corresponding routing information.
    Type: Application
    Filed: October 9, 2013
    Publication date: August 4, 2016
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rodrigo Alvarez Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20160224886
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Application
    Filed: January 6, 2016
    Publication date: August 4, 2016
    Inventors: Filipp Akopyan, John V. Arthur, Paul A. Merolla, Dharmendra S. Modha, William P. Risk
  • Patent number: 9373073
    Abstract: Embodiments of the invention relate to a time-division multiplexed neurosynaptic module with implicit memory addressing for implementing a universal substrate of adaptation. One embodiment comprises a neurosynaptic device including a memory device that maintains neuron attributes for multiple neurons. The module further includes multiple bit maps that maintain incoming firing events for different periods of delay and a multi-way processor. The processor includes a memory array that maintains a plurality of synaptic weights. The processor integrates incoming firing events in a time-division multiplexing manner. Incoming firing events are integrated based on the neuron attributes and the synaptic weights maintained.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 21, 2016
    Assignee: International Business Machines Corporation
    Inventors: John V. Arthur, Bernard V. Brezzo, Leland Chang, Daniel J. Friedman, Paul A. Merolla, Dharmendra S. Modha, Robert K. Montoye, Jae-sun Seo, Jose A. Tierno
  • Patent number: 9368489
    Abstract: Embodiments of the invention relate to processor arrays, and in particular, a processor array with interconnect circuits for bonding semiconductor dies. One embodiment comprises multiple semiconductor dies and at least one interconnect circuit for exchanging signals between the dies. Each die comprises at least one processor core circuit. Each interconnect circuit corresponds to a die of the processor array. Each interconnect circuit comprises one or more attachment pads for interconnecting a corresponding die with another die, and at least one multiplexor structure configured for exchanging bus signals in a reversed order.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: June 14, 2016
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 9363137
    Abstract: Embodiments of the invention relate to faulty recovery mechanisms for a three-dimensional (3-D) network on a processor array. One embodiment comprises a multidimensional switch network for a processor array. The switch network comprises multiple switches for routing packets between multiple core circuits of the processor array. The switches are organized into multiple planes. The switch network further comprises a redundant plane including multiple redundant switches. Multiple data paths interconnect the switches. The redundant plane is used to facilitate full operation of the processor array in the event of one or more component failures.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 7, 2016
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian Iyer, Paul A. Merolla, Dharmendra S. Modha