Patents by Inventor Paul R. Besser

Paul R. Besser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140021615
    Abstract: The present disclosure is generally directed to multi-layer barrier layer stacks for interconnect structures that may be used to reduce mechanical stress levels between the interconnect structure and a dielectric material layer in which the interconnect structure is formed. One illustrative method disclosed herein includes forming a recess in a dielectric layer of a substrate and forming an adhesion barrier layer including an alloy of tantalum and at least one transition metal other than tantalum to line the recess, wherein forming the adhesion barrier layer includes creating a first stress level across a first interface between the adhesion barrier layer and the dielectric layer. The method also includes forming a stress-reducing barrier layer including tantalum over the adhesion barrier layer, wherein the stress-reducing barrier layer reduces the first stress level to a second stress level less than the first stress level, and filling the recess with a fill layer.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 23, 2014
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Patent number: 8623758
    Abstract: A method includes forming an adhesion barrier layer over a dielectric layer formed on a substrate. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. A metal layer is formed over the stress-reducing barrier layer. The metal layer, adhesion barrier layer, and stress-reducing barrier layer define an interconnect metal stack. Recesses are defined in the interconnect metal stack to expose the dielectric layer. The recesses are filled with a dielectric material, wherein a portion of the interconnect metal stack disposed between adjacent recessed filled with dielectric material defines an interconnect structure.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 7, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20130049200
    Abstract: Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to fond an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A silicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Paul R. Besser, Roy A. Carruthers, Christopher P. D'Emic, Christian Lavoie, Conal E. Murray, Kazuya Ohuchi, Christopher Scerbo, Bin Yang
  • Publication number: 20130049199
    Abstract: Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to form an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A suicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Paul R. Besser, Roy A. Carruthers, Christopher P. D'Emic, Christian Lavoie, Conal E. Murray, Kazuya Ohuchi, Christopher Scerbo, Bin Yang
  • Patent number: 8330235
    Abstract: Transistor devices are formed with nickel silicide layers formulated to prevent degradation upon removal of overlying stress liners. Embodiments include transistors with nickel silicide layers having a platinum composition gradient increasing in platinum content toward the upper surfaces thereof, i.e., increasing in platinum in a direction away from the gate electrode and source/drain regions. Embodiments include forming a first layer of nickel having a first amount of platinum and forming, on the first layer of nickel, a second layer of nickel having a second amount of platinum, the second weight percent of platinum being greater than the first weight percent. The layers of nickel are then annealed to form a nickel silicide layer having the platinum composition gradient increasing in platinum toward the upper surface.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: December 11, 2012
    Assignee: Globalfoundries Inc.
    Inventors: Karthik Ramani, Paul R. Besser
  • Patent number: 8283786
    Abstract: A method for forming an integrated circuit system includes providing an integrated circuit device; and forming an integrated contact over the integrated circuit device including: providing a via over the integrated circuit device; forming a selective metal in the via; forming at least one nanotube over the selective metal; and forming a cap over the nanotubes.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 9, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Paul R. Besser
  • Patent number: 8102009
    Abstract: An integrated circuit with a semiconductor substrate is provided. A gate dielectric is on the semiconductor substrate, and a gate is on the gate dielectric. A metallic layer is on the semiconductor substrate, and the metallic layer is reacted with the semiconductor substrate to form an early phase of silicide. Implanted shallow source/drain junctions are immediately beneath the silicide. A final phase of the silicide is formed. An interlayer dielectric is above the semiconductor substrate, and contacts are formed to the silicide.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: January 24, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Simon Siu-Sing Chan, Paul R. Besser, Jeffrey P. Patton
  • Publication number: 20110198670
    Abstract: Transistor devices are formed with nickel silicide layers formulated to prevent degradation upon removal of overlying stress liners. Embodiments include transistors with nickel silicide layers having a platinum composition gradient increasing in platinum content toward the upper surfaces thereof, i.e., increasing in platinum in a direction away from the gate electrode and source/drain regions. Embodiments include forming a first layer of nickel having a first amount of platinum and forming, on the first layer of nickel, a second layer of nickel having a second amount of platinum, the second weight percent of platinum being greater than the first weight percent. The layers of nickel are then annealed to form a nickel silicide layer having the platinum composition gradient increasing in platinum toward the upper surface.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Karthik Ramani, Paul R. BESSER
  • Patent number: 7994038
    Abstract: Transistor devices are formed with nickel silicide layers formulated to prevent degradation upon removal of overlying stress liners. Embodiments include transistors with nickel silicide layers having a platinum composition gradient increasing in platinum content toward the upper surfaces thereof, i.e., increasing in platinum in a direction away from the gate electrode and source/drain regions. Embodiments include forming a first layer of nickel having a first amount of platinum and forming, on the first layer of nickel, a second layer of nickel having a second amount of platinum, the second weight percent of platinum being greater than the first weight percent. The layers of nickel are then annealed to form a nickel silicide layer having the platinum composition gradient increasing in platinum toward the upper surface.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: August 9, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Karthik Ramani, Paul R. Besser
  • Patent number: 7910996
    Abstract: A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: March 22, 2011
    Inventors: Paul R. Besser, Scott D. Luning
  • Patent number: 7843015
    Abstract: An integrated circuit is provided. A gate dielectric is formed on a semiconductor substrate, and a gate is formed over the gate dielectric. A sidewall spacer is formed around the gate and a source/drain junction is formed in the semiconductor substrate using the sidewall spacer. A bottom silicide metal is deposited on the source/drain junction and then a top silicide metal is deposited on the bottom silicide metal. The bottom and top silicide metals are formed into their silicides. A dielectric layer is deposited above the semiconductor substrate and a contact is formed in the dielectric layer to the top silicide.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: November 30, 2010
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Robert J. Chiu, Paul R. Besser, Simon Siu-Sing Chan, Jeffrey P. Patton, Austin C. Frenkel, Thorsten Kammler, Errol Todd Ryan
  • Publication number: 20100193876
    Abstract: Transistor devices are formed with nickel silicide layers formulated to prevent degradation upon removal of overlying stress liners. Embodiments include transistors with nickel silicide layers having a platinum composition gradient increasing in platinum content toward the upper surfaces thereof, i.e., increasing in platinum in a direction away from the gate electrode and source/drain regions. Embodiments include forming a first layer of nickel having a first amount of platinum and forming, on the first layer of nickel, a second layer of nickel having a second amount of platinum, the second weight percent of platinum being greater than the first weight percent. The layers of nickel are then annealed to form a nickel silicide layer having the platinum composition gradient increasing in platinum toward the upper surface.
    Type: Application
    Filed: February 5, 2009
    Publication date: August 5, 2010
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Karthik Ramani, Paul R. Besser
  • Patent number: 7754554
    Abstract: Methods for fabricating low contact resistance CMOS integrated circuits are provided. In accordance with an embodiment, a method for fabricating a CMOS integrated circuit including an NMOS transistor and a PMOS transistor disposed in and on a silicon-comprising substrate includes depositing a first silicide-forming metal on the NMOS and PMOS transistors. The first silicide-forming metal forms a silicide at a first temperature. At least a portion of the first silicide-forming metal is removed from the NMOS or PMOS transistor and a second silicide-forming metal is deposited. The second silicide-forming metal forms a silicide at a second temperature that is different from the first temperature. The first silicide-forming metal and the second silicide-forming metal are heated at a temperature that is no less than the higher of the first temperature and the second temperature.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: July 13, 2010
    Assignee: GlobalFoundries Inc.
    Inventors: Igor Peidous, Patrick Press, Paul R. Besser
  • Patent number: 7749898
    Abstract: A method for forming an interconnect structure includes forming a dielectric layer above a first layer having a conductive region defined therein. An opening is defined in the dielectric layer to expose at least a portion of the conductive region. A metal silicide is formed in the opening to define the interconnect structure. A semiconductor device includes a first layer having a conductive region defined therein, a dielectric layer formed above the first layer, and a metal silicide interconnect structure extending through the dielectric layer to communicate with the conductive region.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: July 6, 2010
    Assignee: Globalfoundries Inc.
    Inventors: Paul R. Besser, Christian Lavoie, Cyril Cabral, Jr., Stephen M. Rossnagel, Kenneth P. Rodbell
  • Patent number: 7737021
    Abstract: The present invention is directed to a method of forming semiconductor devices. In one illustrative embodiment, the method comprises defining a photoresist feature having a first size in a layer of photoresist that is formed above a layer of dielectric material. The method further comprises reducing the first size of the photoresist feature to produce a reduced size photoresist feature, forming an opening in the layer of dielectric material under the reduced size photoresist feature, and forming a conductive material in the opening in the layer of dielectric material.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: June 15, 2010
    Assignee: Globalfoundries Inc.
    Inventors: Srikanteswara Dakshina-Murthy, Paul R. Besser, Jonathan B. Smith, Eric M. Apelgren, Christian Zistl, Jeremy I. Martin, Lie Larry Zhao, Nicholas John Kepler
  • Patent number: 7719035
    Abstract: A low contact resistance CMOS integrated circuit and method for its fabrication are provided. The CMOS integrated circuit comprises a first transition metal electrically coupled to the N-type circuit regions and a second transition metal different than the first transition metal electrically coupled to the P-type circuit regions. A conductive barrier layer overlies each of the first transition metal and the second transition metal and a plug metal overlies the conductive barrier layer.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: May 18, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Paul R. Besser
  • Patent number: 7713834
    Abstract: A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a ALD process.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 11, 2010
    Assignee: GlobalFoundries Inc.
    Inventors: Haihong Wang, Minh-Van Ngo, Qi Xiang, Paul R. Besser, Eric N. Paton, Ming-Ren Lin
  • Patent number: 7701019
    Abstract: An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: April 20, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Minh V. Ngo, Paul R. Besser, Ming Ren Lin, Haihong Wang
  • Patent number: 7696092
    Abstract: A method of fabricating an integrated circuit includes forming a barrier layer along lateral side walls and a bottom of a via aperture and providing a ternary copper alloy via material in the via aperture to form a via. The via aperture is configured to receive the ternary copper alloy via material and electrically connect a first conductive layer and a second conductive layer. The ternary copper alloy via material helps the via to have a lower resistance and an increased grain size with staffed grain boundaries.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: April 13, 2010
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sergey D. Lopatin, Paul R. Besser, Pin-Chin Connie Wang
  • Patent number: 7670915
    Abstract: A method of forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A silicide is formed on the source/drain junctions and on the gate. An interlayer dielectric having contact holes therein is formed above the semiconductor substrate. Contact liners are formed in the contact holes, and contacts are then formed over the contact liners. The contact liners are nitrides of the contact material, and formed at a temperature below the thermal budget for the silicide.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 2, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Errol Todd Ryan, Paul R. Besser, Simon Siu-Sing Chan, Robert J. Chiu, Mehrdad Mahanpour, Minh Van Ngo